• Title/Summary/Keyword: CAE 자료관리

Search Result 4, Processing Time 0.017 seconds

Integration of CAE Data Management with PLM by using Product Views (제품관점을 이용한 CAE 자료관리와 PLM 통합)

  • Do, Nam-Chul;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.527-533
    • /
    • 2008
  • This paper proposes a product data model and associated process for CAE activities in context of integrated product development. The data model and process enable Product Lifecycle Management(PLM) systems to integrate currently separated CAE activities into the main product development process. The product view concept in the proposed product data model supports independent CAE activities including analysis of various alternatives based on shared product structures with design departments and seamless translation of the CAE result to design product views. The proposed model is validated through an implementation of a prototype PLM system that can integrate and synchronize CAE process with the company-wide product development process.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

소성 불안정 이론 및 그 응용

  • 전기찬
    • Journal of the KSME
    • /
    • v.29 no.3
    • /
    • pp.244-252
    • /
    • 1989
  • 평면변형조건에서 성형한계를 빠르고 정확하게 측정할 수 있는 방법을 개발하는 것도 중요하다. 평면변형조건에서의 성형한계를 구하는 데에는 펀치 스트레칭이 주로 이용되지만 그 외에도 여러 가지 방법들이 시도되고 있다. 평면변형조건에서 펀치스트레칭 시험을 행하여 파단이 일 어날 때까지의 펀치 행정거리를 한계 돔 높이(limiting dome height)라 하여 선진 제국에서는 박판금속의 성형성에 대한 품질관리 수단으로서 이용하고 있다. 우리나라의 박판금속의 성형 업계에서도 새로운 공정의 개발에 있어서 성형한계도와 변형측정법을 이용하므로서 시행착오를 줄이고, 한계돔 높이에 의한 품질관리기법을 이용하므로서 불량율저감 및 생산성 향상을 기할 필요가 있다 하겠다. 각종 재료에 대하여 측정한 성형한계에 관한 자료는 그 대표적인 값(예를 들면, 평면변형에서의 성형한계 값)으로서 컴퓨터에 저장하여두면 성형성에 대한 CAE에 의한 분석시에 편리하게 이용될 수 있다.

  • PDF

Risk Assessment with the Development of CAES (Compressed Air Energy Storage) Underground Storage Cavern (CAES(Compresses Air Energy Storage) 지하 저장 공동 개발에 따른 리스크 사정)

  • Yoon, Yong-Kyun;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.319-325
    • /
    • 2013
  • The objective of this study is to assess risks which might occur in connection with the storage of the highly compressed air in underground opening. Risk factors were selected throughout literature survey and analysis for the characteristic of CAES. Large risk factors were categorized in three components; planning and design phase, construction phase, and operation & maintenance phases. Large category was composed of 8 medium risk groups and 24 sub-risks. AHP technique was applied in order to analyze the questionnaires answered by experts and high-risk factors were selected by evaluating the relative importance of risks. AHP analysis showed that the operation & maintenance phases are the highest risk group among three components of large category and the highest risk group of eight medium risk groups is risk associated with the quality and safety. Risk having the highest risk level in 24 sub-risks is evaluated to be a failure of tightness security of inner containment storing compressed air.