• Title/Summary/Keyword: CAD/CAM system

Search Result 581, Processing Time 0.029 seconds

Gouging-free Tool-path Generation for Manufacturing Model Propellers (모형 프로펠러 제작을 위한 과절삭이 없는 공구 경로 생성)

  • Kim, Yoo-Chul;Kim, Tae-Wan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.198-209
    • /
    • 2007
  • In this paper, we present the gouging and collision-free tool-path generation for manufacturing model propellers using the 5-axis NC machine. Because it takes much time to generate tool-paths when we use general purpose CAD/CAM systems, a specific system would be necessary for marine propellers. Overall manufacturing process is composed of two steps: roughcut and finishcut steps. The roughcut is conducted using only 3-axis for efficient machining and the finishcut is done using 5-axis for avoiding collision. The tool-path that might happen to gouging is searched and the tool position is also decided for avoiding interference between the tool and the propeller blades. The present algorithm is applied extensively to the surface piercing propellers. Some results are demonstrated for its validation.

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

Digital Orthodontics using Customized Appliance System (개인 맞춤형 장치를 이용한 디지털 교정치료)

  • Kim, Yoon-Ji R.;Ha, Hye-Jung;Lee, Sung-Jong;Lee, Eon-Hwa;Ryu, Jae-Jun
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.134-141
    • /
    • 2016
  • Use of ready-made orthodontic appliance can lead to inefficiencies in the final stages of the orthodontic treatment. Because patients' teeth have anatomic variations, brackets that have been designed to fit on average tooth surface may result in positional discrepancies when leveling and alignment is completed. As a result, additional steps such as rebonding, wire bending and use of auxiliaries may be needed. Even in patients who have normal tooth anatomy and proper tooth size relationships, precise bracket placement is crucial in order to efficiently control the tooth positions. Digital models can provide advantages in clinical orthodontics as virtual tooth setup could be performed, and clinicians can easily visualize the predicted final occlusion. Through this setup model, customized brackets with individualized prescription and archwires that optimally fit with the patients' dental arches can be produced using CAD/CAM technology. Also, the brackets can be accurately placed with an aid of 3D-printed jigs. The purpose of this article is to introduce the commonly used labial and lingual customized orthodontic appliance systems using digital technology.

  • PDF

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF

Alloplastic total temporomandibular joint replacement using stock prosthesis: a one-year follow-up report of two cases

  • Lee, Sang-Hoon;Ryu, Da-Jung;Kim, Hye-Sun;Kim, Hyung-Gon;Huh, Jong-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.6
    • /
    • pp.297-303
    • /
    • 2013
  • Alloplastic total replacement of the temporomandibular joint (TMJ) was developed in recent decades. In some conditions, previous studies suggested the rationale behind alloplastic TMJ replacement rather than reconstruction with autogenous grafts. Currently, three prosthetic products are available and approved by the US Food and Drug Administration. Among these products, customized prostheses are manufactured, via computer aided design/computer aided manufacturing (CAD/CAM) system for customized design; stock-type prostheses are provided in various sizes and shapes. In this report, two patients (a 50-year-old female who had undergone condylectomy for the treatment of osteochondroma extending to the cranial base on the left condyle, and a 21-year-old male diagnosed with left temporomandibular ankylosis) were treated using the alloplastic total replacement of TMJ using stock prosthesis. The follow-up results of a favorable one-year, short-term therapeutic outcome were obtained for the alloplastic total TMJ replacement using a stock-type prosthesis.

The comparative study on the marginal fit of a metal-ceramic alloy, IPS - Empress and a zirconia($ZrO_2$) ceramic used for fabrication of dental restoration (치과보철물 제작에 사용되는 금속-도재용 합금, IPS - Empress, 지르코니아($ZrO_2$) 세라믹의 변연적합도에 관한 비교평가)

  • Kim, Chul-Soo
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Purpose: As the demand and importance of aesthetic aspects in dental treatment become higher, much attention is paid to materials used for dental prostheses. Thus, the marginal fidelity of most-commonly used alloy, IPS - Empress and ZrO2 ceramic is compared. Methods: The alloy core made by casting, IPS - Empress core made by pressing and ZrO2 ceramic core made by CAD/CAM are used to make 10 samples respectively. For each core, three points were measures and the optical microscope (Axio Imager.Alm,Zeiss co., Oberkochen, Germany) was used to observe the cores with a magnification of 100. Results: As for alloy, IPS - Empress and ZrO2 ceramic, the average and deviation of their marginal distance are $29.91\;{\pm}11.93{\mu}m$ for alloy, $33.45\;{\pm}8.61{\mu}m$ for IPS - Empress, and $31.55\;{\pm}9.85{\mu}m$ for ZrO2. The one-way ANOVA test was conducted to compare them. However, there was no statistically significant difference among them. Conclusion: The study on marginal fidelity of alloy, IPS - Empress, and ZrO2 ceramic shows they have no marginal fidelity problem clinically. Therefore, if a system is selected based on the patient's condition or treatment method, there will be no problem.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

Chair-side CAD/CAM fabrication of a single-retainer resin bonded fixed dental prosthesis: a case report

  • Jurado, Carlos Alberto;Tsujimoto, Akimasa;Watanabe, Hidehiko;Villalobos-Tinoco, Jose;Garaicoa, Jorge Luis;Markham, Mark David;Barkmeier, Wayne Walter;Latta, Mark Andrew
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2020
  • This clinical report describes designing and fabricating a single-retainer resin-bonded fixed dental prosthesis with a chair-side computer-aided design/computer-aided manufacturing system. The whole procedure, from tooth extraction to final placement of the prosthesis, was completed in one day, and a single clinic visit. No clinical complications were found at the 2-year follow-up after placement of the restoration, and satisfactory functional and esthetic results were achieved.

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.