• Title/Summary/Keyword: CAD/CAE integrated optimal design

Search Result 5, Processing Time 0.02 seconds

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용)

  • Nahm, Yoon-Eui;Inoue, Masato;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life (캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용)

  • Kwak, Byung-Man;Yu, Yong-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

An Integrated CAD System for FEA-based Design of Heterogeneous Objects (복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템)

  • Shin K. H.;Kim J. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.328-338
    • /
    • 2005
  • CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF