• Title/Summary/Keyword: C1 arch

Search Result 95, Processing Time 0.03 seconds

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system

  • Zhao, Han-Wei;Ding, You-Liang;Geng, Fang-Fang;Li, Ai-Qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.79-92
    • /
    • 2018
  • The evaluation theory of reliability, availability, maintainability and safety (RAMS) as a mature theory of state evaluation in the railway engineering, can be well used to the evaluation, management, and maintenance of complicated structure like the long-span bridge structures on the high-speed railway. Taking a typical steel-truss arch bridge on the Beijing-Shanghai high-speed railway, the Nanjing Dashengguan Yangtze River Bridge, this paper developed a new method of state evaluation for the existing steel-truss arch high-speed railway bridge. The evaluation framework of serving state for the bridge structure is presented based on the RAMS theory. According to the failure-risk, safety/availability, maintenance of bridge members, the state evaluation method of each monitoring item is presented. The weights of the performance items and the monitoring items in all evaluation levels are obtained using the analytic hierarchy process. Finally, the comprehensive serving state of bridge structure is hierarchical evaluated.

Solitary Xanthogranuloma of the Upper Cervical Spine in a Male Adult

  • Lee, Sun-Joo;Jo, Dae-Jean;Lee, Seung-Hwan;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.1
    • /
    • pp.54-58
    • /
    • 2012
  • We present the rare case of solitary xanthogranuloma in the upper cervical column mimicking a Brown-Sequard syndrome. A 29-year-old man complained with right hemiparesis and left hypoesthesia after a car accident. Computed tomography and magnetic resonance images revealed a lobulated homogenously well-enhancing mass in between posterior arch of the atlas (C1) and spinous process of the axis (C2) resulting in a marked spinal canal narrowing with cortical erosions. The patient was managed by complete resection of the tumor with partial laminectomy with lower half of C1 posterior arch and upper half of C2 spinous process. The authors advise complete removal of the xanthogranuloma and consideration as a differential diagnosis of lesions among upper cervical lesions.

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge

  • Yang, Meng-Gang;Cai, C.S.;Chen, Yong
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.111-129
    • /
    • 2015
  • This paper first presents an experimental study of twelve specimens for their creep performance, including nine concrete-filled steel tubular (CFST) columns and three plain concrete columns, subjected to three levels of sustained axial loads for 1710 days. Then, the creep strain curves are predicted from the existing creep models including the ACI 209 model, the MC 78 model, and the MC 90 model, and further a fitted creep model is obtained by experimental data. Finally, the creep effects of a CFST arch bridge are analyzed to compare the accuracy of the existing creep models. The experimental results show that the creep strains in CFST specimens are far less than in the plain concrete specimens and still increase after two years. The ACI 209 model outperforms the MC 78 model and the MC 90 model when predicting the creep behavior of the CFST specimens. Analysis results indicate that the creep effects in the CFST arch bridge are significant. The deflections and stresses calculated by the ACI 209 model are the closest to the fitted model in the three existing models, demonstrating that the ACI 209 model can be used for creep analysis of CFST arch bridges and can meet the engineering accuracy requirement when lack of experimental data.

Determination of the restoration effect on the structural behavior of masonry arch bridges

  • Altunisik, A.C.;Bayraktar, A.;Genc, A.F.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.101-139
    • /
    • 2015
  • In this paper, it is aimed to investigate the restoration effect on the structural behavior of masonry arch bridges. Dandalaz masonry arch bridge located on the 4km east of Karacasu town of Aydin, Turkey is selected as a numerical example. The construction year of the bridge is not fully known, but the bridge is dated back to 15th century. Considering the current situation, it can be easily seen that the structural elements such as arch, side walls and timber blocks are heavily damaged and the bridge is unserviceable. Firstly finite element model of the bridge is constituted to reflect the current situation (before restoration) using building survey drawings. After, restoration project is explained and finite element model is reconstituted (after restoration). The structural responses of the bridge are obtained before and after restoration under dead load, live load and dynamic earthquake loads. For both conditions, maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the restoration effect. From the study, it can be seen that the maximum internal forces are consisted under dynamic loads before and after restoration. Also, the restoration projects and studies have important and positive effects on the structural response of the bridge to transfer these structures to future.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Evaluation of strategic uprighting of the mandibular molars using an orthodontic miniplate and a nickel-titanium reverse curve arch wire: Preliminary cephalometric study

  • Park, Jae-Hyun;Choo, HyeRan;Choi, Jin-Young;Chung, Kyu-Rhim;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.51 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Objective: To evaluate the overall treatment effects in terms of the amount of uprighting with changes in the sagittal and vertical positions of mandibular molars after applying an orthodontic miniplate with a nickel-titanium (NiTi) reverse curve arch wire (biocreative reverse curve [BRC] system). Methods: A total of 30 female patients (mean age, 25.99 ± 8.96 years) were treated with the BRC system (mean BRC time, 10.3 ± 4.07 months). An I-shaped C-tube miniplate (Jin Biomed) was placed at the labial aspect for the alveolar bone of the mandibular incisors. A 0.017 × 0.025-inch NiTi reverse curve arch wire was engaged at the C-tube mini-plate anteriorly and the first and second premolars and molars posteriorly in the mandibular arch. Pre- and post-BRC lateral cephalograms were analyzed. A paired t-test was used to analyze the treatment effects of BRC. Results: The mandibular second molars were intrusively uprighted successfully by the BRC system. Distal uprighting with a controlled vertical dimension was noted on the first molars when they remained engaged in the BRC and the distal ends of the arch wire were laid on the second molars. The mandibular first and second premolars showed a slight extrusion. The changes in the mandibular incisors were unremarkable, while the mandibular molar angulation improved significantly. The lower occlusal plane rotated counterclockwise (MP-LOP: 1.13° ± 2.60°). Conclusions: The BRC system can provide very effective molar uprighting without compromising the position of the mandibular anterior teeth.

Comparison of treatment effects between four premolar extraction and total arch distalization using the modified C-palatal plate

  • Jo, Sung Youn;Bayome, Mohamed;Park, Justyn;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.224-235
    • /
    • 2018
  • Objective: The purpose of this study was to compare the skeletal, dental, and soft-tissue treatment effects of nonextraction therapy using the modified C-palatal plate (MCPP) to those of premolar extraction (PE) treatment in adult patients with Class II malocclusion. Methods: Pretreatment and posttreatment lateral cephalographs of 40 adult patients with Class II malocclusion were retrospectively analyzed. The MCPP group comprised 20 patients treated with total arch distalization of the maxillary arch while the PE group comprised 20 patients treated with four PE. Fifty-eight linear and angular measurements were analyzed to assess the changes before and after treatment. Descriptive statistics, paired t-test, and multivariate analysis of variance were performed to evaluate the treatment effects within and between the two groups. Results: The MCPP group presented 3.4 mm of retraction, 1.0 mm of extrusion, and $7.3^{\circ}$ lingual inclination of the maxillary central incisor. In comparison, the PE group displayed greater amount of maxillary central incisor retraction and retroclination, mandibular incisor retraction, and upper lip retraction (5.3 mm, $14.8^{\circ}$, 5.1 mm, and 2.0 mm, respectively; p < 0.001 for all). In addition, the MCPP group showed 4.0 mm of distalization and 1.3 mm of intrusion with $2.9^{\circ}$ distal tipping of the maxillary first molars. Conclusions: These findings suggest the MCPP is an effective distalization appliance in the maxillary arch. The amount of incisor retraction, however, was significantly higher in the PE group. Therefore, four PE may be recommended when greater improvement of incisor position and soft-tissue profile is required.

A Study on Basal and Dental Arch Width in Skeletal Class III Malocclusion (골격성 III급 부정교합자의 치열궁 폭경에 관한 연구)

  • Lee, Hae-Kyung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.117-127
    • /
    • 2002
  • The purpose of this study was to compare the arch width of the hyperdivergent group with that of the neutral group in Class III malocclusion based on the vertical patterns and to compare the arch width of Class III neutral group With that of normal occlusion group based on sagittal patterns. The subjects consisted of 118 pairs of studty casts, divided into three groups , 37 Class III hyperdivergent group(18 males and 19 females, SN-Mn plane angle>39.5$^{\circ}$), 40 Class III neutral group(20 males and 20 females, SN-Mn plane angle : 32 ${\pm}$ 2.5$^{\circ}$) and 41 Class I normal occlusion group(20 males and 21 females). The intercanine, interpremolar, and intermolar width of the maxillary and mandibular study casts were measured, then the ratios of dental width to basal width and mandibular width to maxillary width were obtained. Basal arch width and dental arch width were measured to obtain the pure basal arch relation in transverse plane as ruled out the transverse dental compensation. The results were as follows 1. There were no significant differences in any ratios between Class III hyperdivergent group and Class III neutral group as different vertical pattern. 2. As the ratios of dental arch width to basal arch width between normal occlusion group and Class III neutral group were compared, the maxillary teeth flared buccally to the basal bone, and the mandibular teeth tilted lingually to the basal bone in Class III neutral group. 3. The ratios of mandibular arch width to maxillary arch width in basal arch level were significantly different in all regions. Maxillary basal arch width of Class III neutral group was narrower than that of normal occlusion group. 4. The ratios of mandibular arch width to maxillary arch width in teeth level were not significantly different between normal occlusion group and Class III neutral group. In spite of discrepancies of maxillary and mandibular basal arch width, the dental arch width of Class III malocclusion group compensated very well. At the presurgical orthodontic treatment in clinic, it would not be desirable to decompensate for compensated dental arch width too much, for obtaining an appropriate arch compatibility and good results for orthognathic surgery.