• Title/Summary/Keyword: C. neoformans

Search Result 64, Processing Time 0.021 seconds

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Fungistatic Activity of Kojic Acid Against Human Pathogenic Fungi and Inhibition of Melanin-production in Cryptococcus neoformans

  • Chee, Hee-Youn;Lee, Eun-Hee
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.248-250
    • /
    • 2003
  • Kojic acid was investigated for its antifungal activity against the human pathogenic fungi including Candida albicans, Cryptococcus neoformans and Trichophyton rubrum. For C. albicans, C. neoformans and T. rubrum, the MIC(minimum inhibitory concentration) of kojic acid was 640, 80 and 160 ${\mu}g/ml$, respectively. In C. neoformans, melanin-producing yeast, kojic acid-treated nonmelanized cell was more susceptible to magainin than melanized cell, suggesting melanin give a protective function against microbial peptide.

Inhibition of the Calcineurin Pathway by Two Tannins, Chebulagic Acid and Chebulanin, Isolated from Harrisonia abyssinica Oliv.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Sung In;Kim, Young Tae;Nash, Oyekanmi;Bahn, Yong-Sun;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1377-1381
    • /
    • 2014
  • In order to discover and develop novel signaling inhibitors from plants, a screening system was established targeting the two-component system of Cryptococcus neoformans by using the wild type and a calcineurin mutant of C. neoformans, based on the counter-regulatory action of high-osmolarity glycerol (Hog1) mitogen-activated protein kinase and the calcineurin pathways in C. neoformans. Among 10,000 plant extracts, that from Harrisonia abyssinica Oliv. exhibited the most potent inhibitory activity against C. neoformans var. grubii H99 with fludioxonil. Bioassay-guided fractionation was used to isolate two bioactive compounds from H. abyssinica, and these compounds were identified as chebulagic acid and chebulanin using spectroscopic methods. These compounds specifically inhibited the calcineurin pathway in C. neoformans. Moreover, they exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentrations ranging from 0.25 to over $64{\mu}g/ml$.

Identification and Functional Characterization of a Cryptococcus neoformans UPC2 Homolog

  • Kim, Nam-Kyun;Han, Kyung-Hwan;Jung, Won-Hee
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.215-218
    • /
    • 2010
  • Azoles are currently the most widely used class of antifungal drugs clinically, and are effective for treating fungal infections. Target site of azoles is ergosterol biosynthesis in fungal cell membrane, which is absent in the mammalian host. However, the development of resistance to azole treatments in the fungal pathogen has become a significant challenge. Here, we report the identification and functional characterization of a UPC2 homolog in the human pathogen Cryptococcus neoformans. UPC2 plays roles in ergosterol biosynthesis, which is also affected by the availability of iron in Saccharomyces cerevisiae and Candida albicans. C. neoformans mutants lacking UPC2 were constructed, and a number of phenotypic characteristics, including antifungal susceptibility and iron utilization, were analyzed. No differences were found between the mutant phenotypes and wild type, suggesting that the role of C. neoformans UPC2 homolog may be different from those in S. cerevisiae and C. albicans, and that the gene may have a yet unknown function.

Disseminated Cryptococcosis in a dog due to Cryptococcus neoformans var. neoformans (한 마리의 개에 있어서 Cryptococcus neoformans var. neoformans에 의한 파종성 크림토콕스병)

  • 팔마헨드라;마쭈자카나오노리;이창우
    • Journal of Veterinary Clinics
    • /
    • v.13 no.2
    • /
    • pp.198-203
    • /
    • 1996
  • 일반적인 치료에 반응을 나타내지 않는 호흡곤란증에 걸린 4년령의 Shepherd개에서 피부, 눈, 림프절의 병변을 동반한 치명적인 파종성 크립토콕스병이 진단되었다. 세포학적검사에 의해 난원형 내지 구형이고, 두꺼운 협막을 갖고 있는, 형태학적으로 Cryptococcus neoformans와 일치하는 효모균이 증명되었다. 이 병원체는 혈액, 오줌, 콧물, 견갑전림프절 흡인물, 피부생검 시료, 피부 면봉 시료 등을 25$\circ $C의 Pal씨 배지에 접종하여 용이하게 분리되었다 배양물을 PHOL염색액으로 염색하여 현미경으로 검사한 결과 얇은 막에 싸인 발아를 나타내거나. 나타내지 않는 구형 내지 난원형의 효모균이 증명되었다. 이 개는 ketaconazole 로 치료를 시작 한 후 6일만에 폐사하였다. 공기, 흙, 비둘기 배설물, 톱밥 등을 Pal씨 배지에 접종하여 C.neoformans가 배양됨으로써 역학적으로 환경이 병원소 역할을 한 것으로 판단되었다. 환축과 환경으로부터 분리된 균주는 세밀한 동정결과 neoformans (serotype AD)에 속하며, Filobasidiella neoformans "alpha" mating type을 나타내었다. 이 연구결과, Pal씨 배지가 크립토콕스병의 조기진단과 역학적 조사에 훌륭한 감별배지라는 것이 입증되었다. 개량된 Pal씨 배지는 C. neoformans의 genetic crossing을 판단하는데 성공적으로 사용할 수 있었다.

  • PDF

Mitochondrial Protein Nfu1 Influences Homeostasis of Essential Metals in the Human Fungal Pathogen Cryptococcus neoformans

  • Kim, Jeongmi;Park, Minji;Do, Eunsoo;Jung, Won Hee
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.427-431
    • /
    • 2014
  • Mitochondrial protein Nfu1 plays an important role in the assembly of mitochondrial Fe-S clusters and intracellular iron homeostasis in the model yeast Saccharomyces cerevisiae. In this study, we identified the Nfu1 ortholog in the human fungal pathogen Cryptococcus neoformans. Our data showed that C. neoformans Nfu1 localized in the mitochondria and influenced homeostasis of essential metals such as iron, copper and manganese. Marked growth defects were observed in the mutant lacking NFU1, which suggests a critical role of Nfu1 in Fe-S cluster biosynthesis and intracellular metal homeostasis in C. neoformans.

Functional Characterization of cAMP-Regulated Gene, CAR1, in Cryptococcus neoformans

  • Jung, Kwang-Woo;Maeng, Shin-Ae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The cyclic AMP (cAMP) pathway plays a major role in growth, sexual differentiation, and virulence factor synthesis of pathogenic fungi. In Cryptococcus neoformans, perturbation of the cAMP pathway, such as a deletion in the gene encoding adenylyl cyclase (CAC1), causes defects in the production of virulence factors, including capsule and melanin production, as well as mating. Previously, we performed a comparative transcriptome analysis of the Ras- and cAMP- pathway mutants, which revealed 163 potential cAMP-regulated genes (38 genes at a 2-fold cutoff). The present study characterized the role of one of the cAMP pathway-dependent genes (serotype A identification number CNAG_ 06576.2). The expression patterns were confirmed by Northern blot analysis and the gene was designated cAMP-regulated gene 1 (CAR1). Interestingly, deletion of CAR1 did not affect biosynthesis of any virulence factors and the mating process, unlike the cAMP-signaling deficient cac1$\Delta$ mutant. Furthermore, the car1$\Delta$ mutant exhibited wild-type levels of the stress-response phenotype against diverse environmental cues, indicating that Car1, albeit regulated by the cAMP-pathway, is not essential to confer a cAMP-dependent phenotype in C. neoformans.

The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence

  • Li, Jingbo;Chang, Yun C.;Wu, Chun-Hua;Liu, Jennifer;Kwon-Chung, Kyung J.;Huang, Sheng-He;Shimada, Hiro;Fante, Rob;Fu, Xiaowei;Jong, Ambrose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.918-927
    • /
    • 2016
  • Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus.

Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans

  • Choi, Yoojeong;Do, Eunsoo;Hu, Guanggan;Caza, Melissa;Horianopoulos, Linda C.;Kronstad, James W.;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1142-1148
    • /
    • 2020
  • Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.

Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi

  • Park, Minji;Do, Eunsoo;Jung, Won Hee
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.