• Title/Summary/Keyword: C-tube

Search Result 1,890, Processing Time 0.028 seconds

Pool Boiling Heat Transfer Characteristics of R-l34a in Titanium Horizontal Plain and Low Finned Tubes (티타늄 평활관 및 전열촉진관에서 R-l34a의 관외측 풀비등 열전달 특성에 대한 연구)

  • Heo Jae-Hyeok;Yun Rin;Chung Jin-Taek;Moon Young-lune;Kim Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.854-860
    • /
    • 2005
  • Pool boiling heat transfer characteristics of R-134a were investigated in titanium plain and low finned tubes. The diameter of test tube was 15.88 mm and the fin density was 33 fpi. Tests were conducted at saturation temperatures of $20^{\circ}C$ and $30^{\circ}C$. Heat fluxes varied from 5000 W/$m^2$ to 50,000 W/$m^2$ based on surface area of the plain tube. The pool boiling heat transfer coefficients of the titanium horizontal plain tube are lower than those of the copper plain tube by $8.2\%$. The boiling heat transfer coefficients of the low finned tube are averagely higher than those of the plain tubes by $34\%$. The average deviation of the Slipcevic correlation from the present data for the low finned tube is $20\%$.

Pool boiling performance of an enhanced tube used in flooded refrigerant evaporator for turbo-refrigerator (터보냉동기용 만액식 증발기에 사용되는 성형가공관의 풀비등 성능)

  • 김태형;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.808-814
    • /
    • 1999
  • Pool boiling performance of a metal-formed enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a), at two different saturation temperatures $4.4^{\circ}C \;and \;26.7^{\circ}C$ .Heat flux was varied from 10㎾/$m^2\;to\ 50㎾/$m^2$. Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times higher for R-11, 6.0 tines higher for R-123 and 3.5 times higher for R-l34a. The enhancements are comparable with those of foreign products. The heat transfer coefficients of R-l34a were higher than those of R-11 and R-123, either for the enhanced tube or for the smooth tube. At $4.4^{\circ}Csaturation temperature, however, the heat transfer coefficients of R-l34a were approximately the same as those of R-11, The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube - the heat transfer coefficient increases as the saturation pressure increases.

  • PDF

An Easy Detection Method of Fasciola Eggs by Kim's Sedimental Tube (K-식(式) 침전관(沈澱管)에 의한 간질충란(肝蛭蟲卵) 간이검사법(簡易檢査法))

  • Kim, Kyo-Joon;Kim, Sang-Keun;Hu, Min-Do
    • Korean Journal of Veterinary Research
    • /
    • v.23 no.1
    • /
    • pp.105-110
    • /
    • 1983
  • The studies carried out to investigate the detection method of Fasciola eggs from positive cattle feces in the intradermal reaction method with laborsaving composition of sieves and Kim's sedimental tube method. The results obtained are summarized as follows: 1. The detection method of Fasciola eggs was improved by 3 meshes (100mesh, 150mesh, 250mesh) for filteration of fecal fluid contained Fasciola eggs. 2. Third type of tube in the 3 kinds of sedimental tube had the highest recovers rate of Fasciola eggs. Thus, this type of tube was selected and called as Kim's sedimental tube. 3. A-II, A-III, B-III and C-III type by Kim's sedimental tube method had the recovery rates of eggs in the 1st drop as ranged 99 to 100% and, A-I, B-II, C-II as 71 to 91%. 4. These Type of tubes were useful to detect Fasciola eggs and to shorten the time of the diagnostic procedures. 5. The Kim's sedimental tube method showed high recovery rates and convenient procedures as compared with other detection methods reported. In addition, the EPG value can also be obtained by this method. Therefore, it is desirable that the Kim's sedimental tube method could be recommended to clinicians.

  • PDF

Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type (Spiral 구조 EGR Cooler의 열유동 특성 평가)

  • 허형석;원종필;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

Effects of Pool Subcooling on Boiling Heat Transfer in an Annulus

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.460-474
    • /
    • 2004
  • Effects of liquid subcooling on pool boiling heat transfer in an annulus with an open bottom have been investigated experimentally. A tube of 19.1mm diameter and the water at atmospheric pressure have been used for the fest. Up to $50^{\circ}C$ of liquid subcooling has been tested and experimental data of the annulus have been compared with the data of a single unrestricted tube. Temperatures on the heated tube surface fluctuate only slightly regardless of the heat flux in the annulus, whereas high variation is observed on the surface of the single tube. An increase in the degree of subcooling decreases heat transfer coefficients greatly both for the single tube and the annulus. Heat transfer coefficients increase suddenly at ${\Delta}T_{sub}\;{\le}\;10^{\circ}C$ and much greater change in heat transfer coefficients is observed at the annulus. To obtain effects of subcooling on heat transfer quantitatively, two new empirical equations have been suggested, and the correlations predict the empirical data within ${\pm}30\%$ error bound excluding some data at lower heat transfer coefficients.

Comparisons between the KKU-Model and Conventional Rectal Tubes as Markers for Checking Rectal Doses during Intracavitary Brachytherapy of Cervical Cancer

  • Padoongcharoen, Prawat;Krusun, Srichai;Palusuk, Voranipit;Pesee, Montien;Supaadirek, Chunsri;Thamronganantasakul, Komsan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6115-6120
    • /
    • 2014
  • Background: To compare the KKU-model rectal tube (KKU-tube) and the conventional rectal tube (CRT) for checking rectal doses during high-dose-rate intracavitary brachytherapy (HDR-ICBT) of cervical cancer. Materials and Methods: Between February 2010 and January 2011, thirty -two patients with cervical cancer were enrolled and treated with external beam radiotherapy (EBRT) and intracavitary brachytherapy (ICBT). The KKU-tube and CRT were applied intrarectally in the same patients at alternate sessions as references for calculation of rectal doses during ICBT. The gold standard references of rectum anatomical markers which are most proximal to radiation sources were anterior rectal walls (ARW) adjacent to the uterine cervix demonstrated by barium sulfate suspension enema. The calculated rectal doses derived from actual anterior rectal walls, CRT and the anterior surfaces of the KKU-tubes were compared by using the paired t-test. The pain caused by insertion of each type of rectal tube was assessed by the visual analogue scale (VAS). Results: The mean dose of CRT was lower than the mean dose of ARW ($Dmean_0-Dmean_1$) by $80.55{\pm}47.33cGy$ (p-value <0.05). The mean dose of the KKU-tube was lower than the mean dose of ARW ($Dmean_0-Dmean_2$) by $30.82{\pm}24.20cGy$ (p-value <0.05). The mean dose difference [($Dmean_0-Dmean_1$)-($Dmean_0-Dmean_2$)] was $49.72{\pm}51.60cGy$, which was statistically significant between 42.32 cGy -57.13 cGy with the t-value of 13.24 (p-value <0.05). The maximum rectal dose by using CRT was higher than the KKU-tube as much as 75.26 cGy and statistically significant with the t-score of 7.55 (p-value <0.05). The mean doses at the anterior rectal wall while using the CRTs and the KKU-tubes were not significantly different (p-value=0.09). The mean pain score during insertion of the CRT was significantly higher than the KKU-tube by a t-score of 6.15 (p-value <0.05) Conclusions: The KKU-model rectal tube was found to be an easily producible, applicable and reliable instrument as a reference for evaluating the rectal dose during ICBT of cervical cancer without negative effects on the patients.

The Study of Corrosion of Heat Exchanger Tube for Absorption Refrigeration Machine (흡수식냉동기용 열교환기 세관의 부식에 관한 연구)

  • 임우조;정기철;윤병두
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.147-152
    • /
    • 2002
  • This paper was studied on corrosion of heat exchanger tube for absorption refrigeration machine. In the 62 % lithium bromide solution at $60^{\circ}C$, polarization test of Cu, Al-brass, 10 % cupro nickel(90-10 % Cu-Ni) and 30 % cupronickel(70-30 % Cu-Ni) tube was carried out. And polarization behavior, polarization resistance characteristics, open circuit potential, anodic polarization of heat exchanger tube for absorption refrigeration machine were considered. The main results are as following: The open circuit potential of Al-brass tube becomes less noble than that of Cu tube, corrosion current density of that becomes lower than Cu tube. The open circuit potential of cupronickel tube is more noble than that of Cu tube, corrosion current density of that is controlled than Cu tube. The passivation critical current of 30 % Cu-Ni tube is lower than that of 10 % Cu-Ni tube, potential of passive region of that is more wide than 10 % Cu-Ni tube.

  • PDF

Characteristics of HTS Tube Depending on Chemical Compositions

  • Jung, Seung-Ho;Jang, Guneik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • The Bi2212 based HTS tubes with 4 different compositions, Bi:Sr:Ca:Cu = 2.0:2.0:1.0:2.0, 2.1:2.0:1.0:2.0,2.2:1.8:1.0:2.0 and 2.2:1.8.1.0.2:2 with 10% of SrSO$_4$ were studied. For tube fabrication the optimum range of melt temperatures and preheating temperature and time for mold were 105$0^{\circ}C$~110$0^{\circ}C$ and 55$0^{\circ}C$ for 30min respectively. The mold rotating speed was 1000rpm. Typical tube dimension was 30/24mm in outside/inside diameter and 60mm in length. A tube was annealed at 84$0^{\circ}C$ for 40 hours in oxygen atmosphere. The plate like grains more than 20${\mu}{\textrm}{m}$ were well developed along the rotating direction of mold regardless of initial chemical compositions. The specimen with Bi2212 composition exhibited $T_c$ of 83K while the specimen with other compositions are lower than 60K. The measured $I_c and J_c$ at 77K(B = 0T) in Bi2212 composition were about 80A and 266A/$\textrm{cm}^2$.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.