• Title/Summary/Keyword: C-terminal deletion

Search Result 68, Processing Time 0.026 seconds

Human Endogenous Retrovirus K (HERV-K) can drive gene expression as a promoter in Caenorhabditis elegans

  • Durnaoglu, Serpen;Kim, Heui-Soo;Ahnn, Joohong;Lee, Sun-Kyung
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.521-526
    • /
    • 2020
  • Endogenous retroviruses (ERVs) are retrotransposons present in various metazoan genomes and have been implicated in metazoan evolution as well as in nematodes and humans. The long terminal repeat (LTR) retrotransposons contain several regulatory sequences including promoters and enhancers that regulate endogenous gene expression and thereby control organismal development and response to environmental change. ERVs including the LTR retrotransposons constitute 8% of the human genome and less than 0.6% of the Caenorhabditis elegans (C. elegans) genome, a nematode genetic model system. To investigate the evolutionarily conserved mechanism behind the transcriptional activity of retrotransposons, we generated a transgenic worm model driving green fluorescent protein (GFP) expression using Human endogenous retroviruses (HERV)-K LTR as a promoter. The promoter activity of HERV-K LTR was robust and fluorescence was observed in various tissues throughout the developmental process. Interestingly, persistent GFP expression was specifically detected in the adult vulva muscle. Using deletion constructs, we found that the region from positions 675 to 868 containing the TATA box was necessary for promoter activity driving gene expression in the vulva. Interestingly, we found that the promoter activity of the LTR was dependent on che-1 transcription factor, a sensory neuron driver, and lin-15b, a negative regulator of RNAi and germline gene expression. These results suggest evolutionary conservation of the LTR retrotransposon activity in transcriptional regulation as well as the possibility of che-1 function in non-neuronal tissues.

NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE (Klebsiella aerogenes Urease로의 닉켈의 도입)

  • Lee, Mann-Hyung-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

WNT11 is a direct target of early growth response protein 1

  • Kim, JuHwan;Jung, Euitaek;Ahn, Sung Shin;Yeo, Hyunjin;Lee, Jeong Yeon;Seo, Jeong Kon;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.628-633
    • /
    • 2020
  • WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNFα) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNFα activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNFα-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNFα-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNFα-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNFα stimulation in breast cancer cells.

Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB (Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과)

  • Kim, Mi Jeong;Kim, Ka Hye;Kim, Moon Jeong;Kim, Jin Ik;Choi, Hye Jung;Moon, Ja Young;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB acts as a critical transcription factor for the survival of cells via the induction of antiapoptotic genes. Constitutive activation of NF-κB in many types of solid tumors suggests that the inhibition of NF-κB might prevent or inhibit tumorigenesis. Although a number of studies demonstrated that Hsp70 regulated NF-κB activity, the exact mechanism is not clear. This study investigated the functional relationship of Hsp70 and IKKγ in the regulation of NF-κB activation using expression plasmids of components of the IKK complex. Wild-type and deletion mutants of IKKγ were expressed together with Hsp70, and the combined regulatory effect of Hsp70 and IKKγ on NF-κB activation was assayed. Hsp70 suppressed the activation of NF-κB in a reporter plasmid assay. Hsp70 also suppressed the phosphorylation and degradation of IκBα. The suppressive effect of Hsp70 on NF-κB activation was synergistically elevated by IKKγ. The N-terminal IKKβ binding site, C-terminal leucine zipper, and zinc finger domains of IKKγ were not necessary for the suppressive effect. Furthermore, Hsp70 and IKKγ synergistically suppressed the induction of COX-2 expression by lipopolysaccharides in RAW264.7 cells. These results suggest that overexpression of Hsp70 and IKKγ may be a strategic method for inhibition of NF-κB and related diseases.

Molecular genetic analysis of phytochelatin synthase genes in Arabidopsis

  • Ha, Suk-Bong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.62-72
    • /
    • 2002
  • This study has investigated the biosynthesis and function of the heavy metal binding peptides, the phytochelatins, in plants. PCs are synthesised enzymatically from glutathione by the enzyme PC synthase in the presence of heavy metal ions. Using Arabidopsis thaliana as a model organism cadmium-sensitive, phytochelatin-deficient mutants have been isolated and characterised in previous studies. The cadl mutants have wildtype levels of glutathione, are PC deficient and lack PC synthase activity. Thus, the CADl gene has been proposed to encode PC synthase. The CADl gene was isolated by a positional cloning strategy The gene was mapped and a candidate identified. Each of four cadl mutants had a single base pair change in the candidate gene and the cadmium-sensitive, cadl phenotype was complemented by the candidate gene. This demonstrated the CADl gene had been cloned. A homologous gene in the fission yeast, Schizosaccharomyces pombe was identified through database searches. A targeted-deletion mutation of this gene was constructed and the mutant, like cadl mutants of Arabidopsis, was cadmium-sensitive and PC-deficient. A comparison of the redicted amino acid sequences reveals a highly conserved N-terminal region Presumed to be the catalytic domain and a variable C-terminal region containing multiple Cys residues proposed to be involved in activation of the enzyme by metal ions. Similar genes were also identified in animal species. The Arabidopsis CADl/AtPCSl and S. pombe SpbPCS genes were expressed in E. coli and were shown to be sufficient for glutathione-dependent, heavy metal activate PC synthesis in vitro, thus demonstrating these genes encode PC synthase enzymes. Using RT-PCR, AtPCSl expression appeared to be independent of Cd exposure. However, at higher levels of Cd exposure a AtPCSl-CUS reporter gene construct appeared to be more highly expressed. Using the reporter gene construct, AtPCSl was expressed most tissues. Expression appeared to be greater in younger tissues and same higher levels of expression was observed in some regions, including carpels and the base of siliques. AtPCS2 was a functional gene encoding an active PC synthase. However, its Pattern of expression and the phenotype of a mutant (or antisense line) have not been determined. Assuming the gene is functional then it has clearly been maintained through evolution and must provide some selective advantage. This implies that, at least in some cells or tissue, it is likely to be the dominant PC synthase expressed. This remains to be determined

  • PDF

Tricho-dento-osseous Syndrome Mutant Dlx3 Shows Lower Transactivation Potential but Has Longer Half-life than Wild-type Dlx3

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to play a role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM #190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. The molecular mechanisms that explain the phenotypic characteristics of TDO syndrome have not been clearly determined. In this study, we examined phenotypic characteristics of wild type DLX3(wtDlx3) and 4-BP DEL DLX3 (TDO mtDlx3) in C2C12 cells. To investigate how wtDlx3 and TDO mtDlx3 differentially regulate osteoblastic differentiation, reporter assays were performed by using luciferase reporters containing the promoters of alkaline phosphatase, bone sialoprotein or osteocalcin. Both wtDlx3 and TDO mtDlx3 enhanced significantly all the reporter activities but the effect of mtDlx3 was much weaker than that of wtDlx3. In spite of these differences in reporter activity, electrophoretic mobility shift assay showed that both wtDlx3 and TDO mtDlx3 formed similar amounts of DNA binding complexes with Dlx3 binding consensus sequence or with ALP promoter oligonucleotide bearing the Dlx3 binding core sequence. TDO mtDlx3 exhibits a longer half-life than wtDlx3 and it corresponds to PESTfind analysis result showing that potential PEST sequence was missed in carboxy terminal of TDO mtDlx3. In addition, co-immunoprecipitation demonstrated that TDO mtDlx3 binds to Msx2 more strongly than wtDlx3. Taken together, though TDO mtDlx3 acted as a weaker transcriptional activator than wtDlx3 in osteoblastic cells, there is possibility that during in vivo osteoblast differentiation TDO mtDlx3 may antagonize transcriptional repressor activity of Msx2 more effectively and for longer period than wtDlx3, resulting in enhancement of osteoblast differentiation.

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli (Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.158-166
    • /
    • 2020
  • A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

Alternative Messenger RNA Splicing of Autophagic Gene Beclin 1 in Human B-cell Acute Lymphoblastic Leukemia Cells

  • Niu, Yu-Na;Liu, Qing-Qing;Zhang, Su-Ping;Yuan, Na;Cao, Yan;Cai, Jin-Yang;Lin, Wei-Wei;Xu, Fei;Wang, Zhi-Jian;Chen, Bo;Wang, Jian-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2153-2158
    • /
    • 2014
  • Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.