• Title/Summary/Keyword: C-glycosides

Search Result 184, Processing Time 0.023 seconds

Effect of Triterpenoidal Glycosides of Dammarane Series and Their Aglycones on Phase Transitions of Dipalmitoylphosphatidylcholine (DPPC의 상전이에 미치는 Dammarane Series의 Triterpenoidal Glycoside와 그 Aglycone의 영향)

  • Kim, Yu.A.;Park, Kyeong-Mee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • The effect of ginseng glycosides and their aglycones on the thermodynamic characteristics of membranes from dipalmitoylphosphatidylcholine (DPPC) was investigated. Total saponins (TS) from Korean red ginseng, Panax ginseng C.A. Meyer, interacted with the Eel Phase of lipid in the Polar region and did not penetrate the deeper glycerol backbone of lipid molecule. From the all investigated components of TS (aglycons and ginsenosides), only 20-(S)-panaxadiol (PD) had an effect similar to TS. High concentration of TS penetrated in hydrophobic Cl-C8 region. The presence of cholesterol did not influence the interaction of TS with DPPC. An elimination of transition, however, took place at 10~100 $\mu\textrm{g}$/ml of TS. DPPC had a low ability to interact with cholesterol (CHL) as compared with other lecithins except ethanolamine. From our results, only TS and PD, at high concentrations (100 mol%), influenced the phase transition of mixture of DPPC:CHL.

  • PDF

Flavonoid Glycosides from Needles of Larix leptolepis(Pinaceae) (일본잎갈나무 잎의 후라보노이드 배당체)

  • Kim, Jin-Kyu;Park, Wan-Geun;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • 일본잎갈나무잎을 채취하여 아세톤 : 물 (7 : 3, v/v) 의 혼합용액으로 추출한 후 에틸아세테이트용성 화합물과 수용성 화합물로 분리하였으며 Sephadex LH-20으로 충진한 칼럼을 사용하여 화합물을 단리 하였다. 단리 화합물을 확인하기 위하여 셀룰로오스 박층 크로마토그래피(TLC)를 실시한 후 자외선 램프 하에서 관찰하였다. 바닐린 발색제를 분무히여 정색반응을 조사하고 $R_r$ 값을 구하였다. 단리된 화합물들의 구조는 $^1H$-NMR과 $^{13}C$-NMR 스펙트럼을 이용하여 그 구조를 규명하였으며 에틸아세테이트용성 화합물에서는 (+)-catechin, (-)-epicatechin, kaempferol-O-arabinofuranoside와 kaempferol-3-O-arabinopyranoside, 수용성 화합물에서는 apigenin-8-C-rhamnosyl-($1"'{\rightarrow}2"$)-glucoside(2"-O-rhamnosylvitexin)을 단리 하였다.

  • PDF

Aristolactam Derivatives and Their N-Glycosides from Aristolochia contorta (청목향(靑木香)의 Lactam 배당체)

  • Lee, Heum-Sook;Han, Dae-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.1
    • /
    • pp.32-37
    • /
    • 1993
  • Phytochemical studies of the root of Aristolochia contorta afforded an unidentified N-glycoside rarely found in natural products. It's structure was elucidated as 8-desmethoxy-aristolactam $N-{\beta}-D-glucopyranoside$ by spectral data and chemical analysis. 6-Hydroxy-8-desmethoxy-aristolactam $N-{\beta}-D-glucopyranoside$, aristolactam I and aristolactam AII were also isolated from the same source. $^{13}C-NMR$ spectra were first assigned and the result confirmed N-C-O-glycosidic linkages in the glycosides.

  • PDF

Synthesis of $^3H$-Labeled dammarane triterpene glycosides of Korean ginseng

  • Han, Byung-Hoon;Woo, Lin-Keun
    • Archives of Pharmacal Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1978
  • A procedure of $^3H$-radio labeling synthesis for the dammarane triterpene glycosides of Korean ginseng was established by using the ginsenoside $Rg_1$ as starting material. The protons in $C-{11}$ and $C_{13}$ of the aglycone moiety of the glycoside were exchanged with tritium by keto-enol tautomerization of 12-keto-ginsenoside $Rg_1$ which was prepared by partial acetylation, Sarett oxidation and saponification, producing nona-acetate, nonaside $Rg_1$. The acety1-ketone and 12-keto-derivative of ginsenotritated ketone was reduced by metallic sodium and isoproponol to produce the end product $^3H$-ginsenoside $Rg_1$ with 3% radio-chemical recovery in one experiment.

  • PDF

Effects of Flavonoids and Their Glycosides on Oxidative Stress in C6 Glial Cells (Flavonoids 및 그 배당체의 산화적 스트레스에 대한 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1371-1377
    • /
    • 2019
  • Oxidative stress induced by the over-production of reactive oxygen species (ROS) in the brain is the most common cause of neurodegenerative diseases such as Alzheimer's. In the present study, we investigated the protective effects of flavonoids and their glycosides, namely kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-β-D-glucoside, against H2O2-induced oxidative stress in the C6 glial cells. The H2O2-treated glial cells exhibited decreased cell viability and increased ROS production when compared with normal cells. However, cells treated with each of the four flavonoids/glycosides demonstrated significantly increased viability and suppressed ROS production when compared with the H2O2-treated control group. These results indicate that flavonoids/glycosides attenuate oxidative stress induced by H2O2 in C6 glial cells. To confirm the protective molecular mechanisms, we measured pro-inflammatory factors such as inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. H2O2 treatment was seen to elevate these factors and decrease IκB-α in the C6 glial cells, while the flavonoids/glycosides induced a down-regulation of the pro-inflammatory factors and increased IκB-α, indicating a neuroprotective effects through attenuation of the inflammation. In particular, quercetin and its glycoside showed a higher neuroprotective effect than the kaempferol treatments. These results suggest that these flavonoids and their glycosides could be promising therapeutic agents for neurodegenerative diseases via the attenuation of oxidative stress.

Flavonoid Components in Plants of the Genus Scutellaria

  • YunChoi, Hye-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.23 no.4
    • /
    • pp.201-210
    • /
    • 1992
  • Scutellariae plants contain a large number of flavonoids and in addition, many of them are with unusual A- and/or B-ring substitutions. The total number of flavonoids reported up to the middle of 1991 are 137 including 89 of flavones, flavonols and their glycosides including 3 C-glycosides$(1{\sim}89)$, 39 of flavanones, dihydroflavonols and their glycosides $(90{\sim}128)$, 8 of chalcones $(129{\sim}136)$ and one biflavonoid, 8, 8'-bibaicalein(137). More than half of the flavonoids are with either unusual 5-metboxy(2'-methoxy in case of chalcones) in A-ring and/or 2'-oxygenation(2-oxygenation in case of chalcones) in B-ring substitutions. Four flavones, four flavanones and two chalcones are with methylation at 5-OH(2'-OH in case of chalcones) and six of them also have 2'-oxygenations(2- in case of chalcones). Sixtyeight out of total 137 flavonoids have oxygenated substitution at 2'-(2- in case of chalcones) position of B-ring and in addition, 27 of them have another oxygen function at 6'-(6- in case of chalcones) and 18 of them have additional oxygen substitutions either at 3'-, 5'-,3',6'-or 3', 4', 5'-(3, 4, 5- in case of chalcones) positions. The distribution and isolation of flavonoid components of Scutellariae plants are tabulated with references.

  • PDF

Inhibitory Effects of Kaempferol-7-O-β-D-glucoside on LPS-induced NO, PGE2 and Inflammatory Cytokines Production in RAW264.7 Macrophages (LPS유도 대식세포에서 Kaempferol-7-O-β-D-glucoside의 NO, PGE2 및 염증성 사이토카인 생성 저해 효과)

  • Park, Jong Cheol;Han, Hee-Soo;Lee, Seung-Bin;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.4
    • /
    • pp.295-300
    • /
    • 2016
  • Flavonoids are widely reported to be beneficial to human health. Among flavonoids, in general, flavonoid aglycons have better biological activities than flavonoid glycosides, in that aglycons can easily penetrate through cell membrane because of their low polarity. Therefore, kaempferol, quercetin and various their glycosides were evaluated for their abilities to inhibit NO and $PGE_2$ productions in LPS-induced RAW 264.7 cells. Of these flavonoids and flavonoid glycosides, kaempferol-7-O-${\beta}$-D-glucoside(kp-7-glu) which possesses a glycoside at C-7 position of the A ring in kaempferol, potently inhibited NO, $PGE_2$ and $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 productions in LPS-induced RAW 264.7 macrophages.

Profiling of flavonoid glycosides in fruits and leaves of jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) using UPLC-DAD-QTOF/MS (UPLC-DAD-QTOF/MS를 이용한 대추나무(Zizyphus jujuba var. inermis (Bunge) Rehder) 잎과 열매의 플라보노이드 배당체 분석)

  • Lee, Min-Ki;Kim, Heon-Woong;Kim, Young Jin;Lee, Seon-Hye;Jang, Hwan-Hee;Jung, Hyun-Ah;Kim, Sook-Bae;Lee, Sung-Hyen;Choe, Jeong-Sook;Kim, Jung-Bong
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1004-1011
    • /
    • 2016
  • Flavonoids, non-nutrient secondary metabolites of plants, are widely distributed in commonly consumed agro-food resources. Flavonoids include aglycones, and their glycosides are reported to have potential health-promoting compounds. The aim of this study was to investigate flavonoid glycosides in the fruit and leaves of Zizyphus jujuba var. inermis (Bunge) Rehder (jujube). A total of six flavonoids (five flavonols and one chalcone) were identified in jujube fruit and leaves by using ultra-performance liquid chromatography-diode array detector-quadrupole time of flight mass spectrometry along with chemical library and an internal standard. In positive ion mode, six flavonoids were linked to the C- and O-glycosides which were conjugated with sugar moieties based on kaempferol, quercetin, and phloretin aglycones. Total flavonoid contents of leaves (8,356.5 mg/100 g dry weight (DW)) was approximately 900-fold higher than that of fruit (fresh fruit, 13.6 mg/100 g dry DW; sun-dried fruits, 9.2 mg/100 g dry DW). Quercetin 3-O-rutinoside (rutin) and quercetin 3-O-robinobioside were the predominant flavonols in fruit and leaves of jujube. In particular, rutin had the highest content (6,735.2 mg/100 g DW) in leaves, and rutin is a widely reported bioactive compound. Phloretin 3',5'-di-C-glucoside (chalcone type) was detected only in leaves. The leaves of jujube contain a high content of flavonoids and the results of this study indicate that jujube leaves may be a source of bioactive flavonoids.