• Title/Summary/Keyword: C-V characteristic

Search Result 429, Processing Time 0.026 seconds

Effect of Thickness on Electrical Properties of PVDF-TrFE (51/49) Copolymer

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.881-884
    • /
    • 2008
  • In this study, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) in the composition from 51/49, was deposited on platinum for a metal-ferroelectric-metal structure. From XRD patterns, the 70 nm- and 140 nm-thick PVDF-TrFE films showed the intensity peak of near $20^{\circ}$ connected to a ferroelectric phase. Moreover, the thicker film indicated the higher intensity than thinner one. The difference of the remanent polarization (2Pr) at 0 V is decreased gradually from 10.19 to $5.7{\mu}C/cm^2$ as the thickness decrease from 140 to 70 nm. However, when the thickness decreased to 50 nm, the 2Pr rapidly drop to $1.6{\mu}C/cm^2$ so the minimum critical thickness might be at least 70 nm for device. Both different thickness films, 70 and 140 nm, indicated that the characteristic of current density-voltage was measured for $10^{-6}{\sim}10^{-7}A/cm^2$ below 15 V and the thicker film maintained relatively lower current density than thinner one. From these results, we can expect that the electrical properties for the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer were able to be on the trade-off relationship between the remanent polarization with the bias voltage and the leakage current.

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology

  • Ahn, Hyun-Mo;Chung, Tae-Kyung;Oh, Yeon-Ho;Song, Ki-Dong;Kim, Young-Il;Kho, Heung-Ryeol;Choi, Myeong-Seob;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.935-943
    • /
    • 2015
  • Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • Kim, Jin-U;Kim, Yeong-Chan;Eom, Se-Won;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

The Influence of the Mg-doped p-GaN Layer Activated in the O2 Ambient on the Current-Voltage Characteristics of the GaN-Based Green LEDs (O2 분위기에서 p-GaN 층의 Mg 활성화가 GaN계 녹색 발광소자에 미치는 전류-전압특성)

  • 윤창주;배성준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.441-448
    • /
    • 2002
  • The electrical properties of the GaN-based green light emitting diodes(LEDs) with the Mg-doped p-GaN layer activated in $N_2$ or $O_2$ ambient have been compared. For the $N_2$ -ambient activation the current-voltage behavior of LEDs has been found to be improved when the Mg dopants activation was performed in the higher temperature. However, for the $O_2$-ambient activation the current-voltage characteristic has been observed to be enhanced when the Mg dopants activation was carried out in the lower temperature. The minimum forward voltage at 20mA was obtained to be 4.8 V for LEDs with the p-GaN layer activated at $900^{\circ}C$ in the $N_2$ ambient and 4.5V for LEDs with the p-GaN layer treated at $700^{\circ}C$ in the $O_2$ambient, repectively. The forward voltage reduction of the LEDs treated in the $O_2$-ambient may be related to the oxygen co-doping of the p-GaN layer during the activation process. The $O_2$ -ambient activation process is useful for the enhancement of the LED performance as well as the fabrication process since this process can activate the Mg dopants in the low temperature.

Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue (열 피로에 미치는 알루미늄 양극산화 제조방법의 융합연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.169-173
    • /
    • 2016
  • Anodic oxidation of aluminum has a sulfuric acid method and a oxalic acid method. Sulfuric acid concentration of the sulfuric acid method is 15~20 wt%. In the case of soft anodizing used in the $20{\sim}30^{\circ}C$ range, and voltage is the most used within a DC voltage 13~15V. In the case of hard anodizing used in the $0{\sim}-5^{\circ}C$ range. An aluminum oxide layer is made using sulfuric acid and oxalic acid. In this study, thermal fatigue of aluminum oxide layer which is made using sulfuric acid and oxalic acid is compared. Crack generating temperature of a sulfuric acid method and a oxalic acid method is $500^{\circ}C$ and $600^{\circ}C$. Thermal fatigue of aluminum oxide layer which is made using oxalic acid is better than thermal fatigue of aluminum oxide layer which is made using sulfuric acid. The characteristic of thermal fatigue can be explained by using thermal expansion coefficient of Al and Al2O3 and manufacturing temperature on Al anodizing. It was made possible through the convergent study to propose the manufacturing method of the anodic oxidation product used at a high temperature.

Electrical Characteristic of AI/AIN/GaAs MIS capacitor Fabricated by Reactive Sputtering Method for the (NH4)2S Treatment (반응성 스퍼터링법으로 AI/AIN/GaAs 커패시터 제조시 (NH4)2S 처리에 따른 전기적 특성)

  • Chu, Soon-Nam;Kwon, Jung-Youl;Park, Jung-Cheul;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • In MIS capacitor structure, we have studied the electrical properties in Ammonium Sulfide solution treatment while AIN thin film as a insulator is being formed by reactive sputtering method. The deposition process conditions of AIN thin film we temperature $250^{\circ}C$, DC Power 150 W, pressure 5 mTorr and 8 sccm(Ar : 4 sccm, $N_{2}$ : 4 sccm). The surface of GaAs was treated with Ammonium Sulfide solution, it was shown the leakage current was less than $10^{-8}\;A/cm^{2}$. The deep depletion phenomena of inverse area with treating Ammonium Sulfide solution in C-V analysis was improved as compared the condition of without Ammonium Sulfide solution and hysteresis property as well.

The characteristics of AlN buffered GaN on ion beam modified Si(111) substrates (Si(111) 위에 Ion beam 처리 후 AlN layer를 완충층으로 이용하여 성장시킨 GaN의 특성)

  • Kwang, Min-Gu;Chin, Jeong-Geun;Lee, Jae-Seok;Oh, Seung-Seok;Hyun, Jin;Byun, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.99-99
    • /
    • 2003
  • The growth of GaN on Si is of great interest due to the several advantages : low cost, large size and high-quality wafer availability as well as its matured technology. The crystal quality of GaN is known to be much influenced by the surface pretreatment of Si substrate[1]. In this work, the properties of GaN overlayer grown on ion beam modified Si(111) have been investigated. Si(111) surface was treated RIB with 1KeV-N$_2$$\^$+/(at 1.9 ${\times}$ 10$\^$-5/) to dose ranging from 5${\times}$10$\^$15/ to 1${\times}$10$\^$17/ prior to film growth. GaN epilayers were grown at 1100$^{\circ}C$ for 1 hour after growing AlN buffer layers for 5∼30 minutes at 1100$^{\circ}C$ in Metal Organic Chemical Vapor Deposition (MOCVD). The properties of GaN epilayers were evaluated by X-Ray Diffraction(XRD), Raman spectroscopy, Photoluminescence(PL) and Hall measurement. The results showed that the ion modified treatment markedly affected to the structural, optical and electrical characteristic of GaN layers.

  • PDF

The characteristics of AlN buffered GaN on ion implanted Si(111) (이온주입된 Si(111)에 AlN 완충층을 이용하여 성장시킨 GaN 박막의 특성)

  • 강민구;진정근;이재석;노대호;양재웅;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.165-165
    • /
    • 2003
  • The growth of GaN on Si is of great interest due to the several advantages low cost, large size and high-quality wafer availability as well as its matured technology. The crystal quality of GaN is known to be much influenced by the surface pretreatment of Si substrate [1]. In this work, the properties of GaN overlayer grown on ion implanted Si(111)and bare Si(111) have been investigated. Si(111) surface was treated ion implantation with 60KeV and dose 1${\times}$10$\^$16//$\textrm{cm}^2$ prior to film growth. GaN epilayers were grown at 1100$^{\circ}C$ for 1 hour after growing AlN buffer layers for 15-30 minutes at 1100$^{\circ}C$ with metal organic chemical vapor deposition (MOCVD). The properties of GaN epilayers were evaluated by X-Ray Diffraction (XRD), Scanning electron microscope (SEM) Photoluminescence (PL) at room temperature and Hall measurement The results showed that the GaN on ion implanted Si(111) markedly affected to the structural, optical and electrical characteristic of GaN layers.

  • PDF

Bosonic Insulator Phase beyond the Superconductor-Insulator Transition in Granular In/InO$_x$ Thin Films

  • Kim, Ki-Joon;Lee, Hu-Jong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.222-222
    • /
    • 1999
  • From extensive measurements of the resistance and the dynamic resistance as functions of magnetic field and temperature, we find that the transport in the insulating state beyond the superconductor-insulator (S-I) transition is dominated by bosons(Cooper pairs and/or vortices) and cannot be described by the theory of the fermionic insulating phase. The maximum of the magnetoresistance at B = B$_m$ and the following negative slope in R(B) with increasing field can be explained by the crossover from the "Bose-glass" to the "Fermi-glass" phase as suggested by Paalanen, Hebard, and Ruel. The zero bias peak in dv/dl for biases below the characteristic voltage V$_c$ (or current $I_c$), gives a clue for the assumption of the "dirty boson" model which states that the insulating state above the critical magnetic field is the phase where Cooper pairs are localized due to the Coulomb blockade with a nonvanishing order parameter. The shift to a lower value of the critical magnetic field by overlaying thin Au layer, which is known as a strong spin-orbit scatterer, also supports the bosonic nature of the S-I transition.

  • PDF

A Study on the Preparation and Dielectric Characteristic of $\beta$-PVDF Vapor Deposited Thin Films by Applied Electric Field Method (전계인가법을 이용한 $\beta$-PVDF 증착 박막의 제조와 유전특성에 관한 연구)

  • 박수홍;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • In this study, the $\beta$-Polyvinylidene fluoride(PVDF) thin films were fabricated by physical vapor deposition method. Also, the properties of dielectric relaxation were studied to understand carrier's behavior of PVDF thin films, to be regarded as the excellent piezo and pyroelectricity. In the process of vapor deposition, the $\beta$-PVDF thin films have been fabricated under the condition of the substrate temperature at 3$0^{\circ}C$, the applied electric field at 142.8kV/cm and the pressure at 2.0${\times}10^{-5}$torr. The dielectric properties of PVDF have been studied in the frequency range 10Hz to 1MHz at temperature from 30 to $100^{\circ}C$. The relative dielectric constant of $\alpha$ and $\beta$-PVDF were 6.8 and 9.8, respectively, under a frequency of 1kHz. Such a phenomenon was caused by the decrease in intermolecular forces originated by the phase-transition from the TGTG' molecular conformation to the TT planar zig-zag conformation. And the relative dielectric constant is increased as a measuring temperature increases, because of the reduction of relaxation time caused by the decrease of intermolecular force.

  • PDF