• Title/Summary/Keyword: C-N bond formation

Search Result 89, Processing Time 0.026 seconds

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

Kinetic Studies on the Reaction of Benzyl m-Nitrobenzenesulfonate with N,N-Dimethylanilines (벤질 m-술폰산니트로벤젠과 N,N-디메틸아닐린類와의 反應에 關한 反應速度論的 硏究)

  • Yoh Soo-Dong;Lee Mu-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.37-41
    • /
    • 1979
  • The kinetics of the reaction of benzyl m-nitrobenzenesulfonate with m-and p-substituted N,N-dimethylanilines in acetone have been investigated by an electric conductivity method. The effects of substituents on the reactivity of N,N-dimethylaniline and the existence of linear free energy relationship were discussed. The rate constants k were in the range 2.55∼487 $10^{-4}l{\cdot}mol^{-l}{\cdot}sec^{-1} (35^{\circ}C)$ and increased with the electron donating ability of substituents. In the present reaction, the Hammett plot was correlated with ${\sigma}$ substituent constant, especially using the new ${\sigma}$ value of 0.35 in p-MeO and it's ${\rho}$ value was found to be -1.37. r value for the reaction was very large than the value obtained in the reaction of benzyl bromide. $Br{\"{o}}nsted$ linear relationship was shown between rate constant and basicites except for p-MeO resulted from solvent effect. From the Bronsted plot, this reaction was suggested that the cleavage of the C${\cdot}{\cdot}{\cdot}$O bond in the $S_N2$ transition state proceed the bond formation.

  • PDF

Characterization of Heterogeneous Interaction Behaviour in Ternary Mixtures by Dielectric Analysis: The H-Bonded Binary Polar Mixture in Non-Polar Solvent

  • Sengwa, R.J.;Madhvi;Sankhla, Sonu;Sharma, Shobha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.718-724
    • /
    • 2006
  • The heterogeneous association behaviour of various concentration binary mixtures of mono alkyl ethers of ethylene glycol with ethyl alcohol were investigated by dielectric measurement in benzene solutions over the entire concentration range at 25 ${^{\circ}C}$. The values of static dielectric constant $\epsilon_0$ of the mixtures were measured at 1 MHz using a four terminal dielectric liquid test fixture and precision LCR meter. The high frequency limiting dielectric constant $\epsilon_\infty$ values were determined by measurement of refractive index $n_D$ ($\epsilon_\infty\;=\;n_D\;^2$). The measured values of $\epsilon_0$ and $\epsilon_\infty$ were used to evaluate the values of excess dielectric constant $\epsilon^E$, effective Kirkwood correlation factor $g^{eff}$ and corrective correlation factor $g_f$ of the binary polar mixtures to obtain qualitative and quantitative information about the H-bond complex formation. The non-linear behaviour of the observed $\epsilon_0$ values of the polar molecules and their mixtures in benzene solvent confirms the variation in the associated structures with change in polar mixture constituents concentration and also by dilution in non-polar solvents. Appearance of the maximum in $\epsilon^E$ values at different concentration of the polar mixtures suggest the formation of stable adduct complex, which depends on the molecular size of the mono alkyl ethers of ethylene glycol. Further, the observed $\epsilon^E$ < 0 also confirms the heterogeneous H-bond complex formation reduces the effective number of dipoles in these polar binary mixtures. In benzene solutions these polar molecules shows the maximum reduce in effective number of dipoles at 50 percent dilutions. But ethyl alcohol rich binary polar mixtures in benzene solvent show the maximum reduce in effective number of dipoles in benzene rich solutions.

Kinetic Studies on the Nucleophilic Reactions of Substituted Benzylnitrates with Anilines in $CH_3CN-CH_3OH$ (아세토니트릴-메탄올 혼합용매계에서 질산벤질과 아닐린의 친핵성 치환반응)

  • Son, Chang Guk;Kim, Wang Gi;Lee, Su Jeong;Yang, Gi Yeol
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.227-231
    • /
    • 1990
  • Kinetic studies on the nucleophilic reactions of p-substituted benzylnitrates with substituted anilines have been conductometically carried out in 50-100% $CH_3CN-CH_3OH$ mixtures. From the kinetic data, Hammett ${\rho}_C$ and ${\rho}_N$ values, Bronsted $\beta$ values, and solvatochromic coefficients were determined in order to examine the transition state variations caused by changes in substituents and solvent properties. It is concluded that the reaction proceeds via a synchronous $S_N2$ mechanism in which bond formation is more advanced than bond cleavage.

  • PDF

Chiral Recognition in Gas chromatographic Resolution of Amino -$^1H\;and^{13}C$ Nuclear magnetic resonance studies of hydrogen bonding in dinmide chiral stationary phases-

  • Park, Man-Ki;Yang, Jeong-Sun;Sohn, Dong-Hwan;Lee, Mi-Young
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.58-61
    • /
    • 1989
  • Studies of selectivity of hydrogen bond formation in chiral solute-solvent systems have been performed by $^1H\;and\;^{13}C$ nuclear magnetic resonance techniques. These data are correlated with the results of gas chromatographic investigations of the same systems. Interactions between the optically active solvent(N-(N-benzoyl-L-amino acid)-anilide) and optically active solute (N-trifluoroacetyl -L-alanyl isopropyl ester) were examined. NMR evidence indicated that hydrogen bonding interaction occurred between two N-H portion and on peptidyl carbonyl portion in stationary phase and solute molecule on three points. The association constants of solvent-solute interaction were calculated and the structure of the diastereomeric association complex between N-(N-benzoyl-L-valyl)-anilide and N-TFA-L-alanyl isopropyl ester was proposed.

  • PDF

3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

  • Uzun, Ismail Hakki;Malkoc, Meral Arslan;Keles, Ali;Ogreten, Ayse Tuba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • PURPOSE. To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (${\mu}CT$) and regional push-out bonding strength. MATERIALS AND METHODS. Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using ${\mu}CT$ scanner at resolution of $13.7{\mu}m$. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the ${\mu}CT$ analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation ($44.86{\pm}22.71$). Multilink N showed the least void surface ($3.51{\pm}2.24mm^2$) and volume ($0.01{\pm}0.01mm^3$). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION. ${\mu}CT$ proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed.

Computational Mechanistic Study on the Catalyst-Free Intramolecular Carbon Insertion

  • Park, Yun-Su;Jeong, Yu-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.111-124
    • /
    • 2013
  • Jianbo Wang의 그룹에서 최근 발표한 무촉매 분자 내 탄소-탄소 결합 형성 반응의 메커니즘을 계산 화학적으로 평가한다. 이 반응은 금속 촉매를 사용하지 않는다는 점과 Bio activity 를 갖는 Hydroxy-substituted Polycyclic Aromatic Compound (PAC)를 손쉽게 합성할 수 있다는 점에서 중요하다. Diazo moiety를 갖는 분자의 반응이 일반적으로 진행할 수 있는 세 가지 반응 경로가 제시되었고, DFT functional을 이용해 중간체 및 전이 상태에 대한 최적화 구조 및 에너지를 얻었다. 탄소-탄소 결합의 원천을 탐구하기 위해 Natural bond orbital charge calculation과 치환기 효과에 대한 계산이 수행되었다. 계산 결과, 중간체로 Triplet carbene을 형성하는 경로가 가장 불안정한 중간체를 형성했고, Tosylate가 해리되기 전 탄소-탄소 결합이 형성되는 경로가 가장 합리적인 반응경로임을 알 수 있었다.

  • PDF

Maillard Reaction Products Formed from D-Glucose-Glycine, System and Their Formation Mechanism (D-Glucose-Glycine 계의 Maillard 반응생성물 및 그 생성기구)

  • KIM Seon-Bong;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 1986
  • Equimolar aqueous solutions of D-glucose and glycine were heated at $50^{\circ}C\;and\;95^{\circ}C$ at pH 6.7. The headspace volatiles and the ether extracts from the reaction mixture were analyzed by gas chromatography and gas chromatography-mass spectrometry using a fused silica capillary column. The major components formed were identified as diacetyl, three furfurals, two pyrroles, one furanone, two pyranones and two amides. In order to elucidate the formation mechanisms of the amides formed front amino-carbonyl reaction, two model systems were adopted. N-butylacetamide were formed as major components from diacetyl-butylamine ana glyoxal-butylamine systems, respectively. The results obtained suggest that such ${\alpha}-dicarbonyls$ as 3-deoxy-D-erythro-2,3-hexodiulose and diacetyl generated in the amino-carbonyl reaction react with amino compounds, amides then being formed by cleavage of the C-C bond in the ${\alpha}-dicarbonyls$.

  • PDF

Isomer Formation in the Chlorination of Highmolecular Paraffinic Hydrocarbons by Various Halogenating Agents (여러 종류의 할로겐 화합물과 고분자량 파라핀계 탄화수소의 염소화에서 생기는 이성질화에 관한 연구)

  • Li-Hoan Kung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.390-405
    • /
    • 1988
  • The chlorination of $C_7H_16,\;C_8H_18,\;C_10H_22,\;and\;(Me_2CH)_2$ with N-Chlorosuccinimide, tert-BuOCl, $CCl_3SO_2Cl,\;CCl_4,\;CCl_3SCl,\; PCl_5,\;and\;Cl_2\;in\;C_6H_6\;or\;CS_2$ which both form loose complexes with $Cl_2$ atoms yielded mixtures of isomeric monochloroalkanes which were analyzed quantitatively. An isomer ratio differing from that known for the substitution of paraffinic hydrocarbons was observed. The isomer distribution observed is the result of the combined effects of the differing C-H dissociation energies of the different types of H atoms of the alkane and of the free energy of the attacking radical with polar effects of the attacking radical as well as of the hydrocarbon.

  • PDF