• Title/Summary/Keyword: C-H ratio

Search Result 4,218, Processing Time 0.031 seconds

Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio (칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kwag, Jung-Hoon;Kim, Jae-Hwan;Kang, Hee-Sul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.

Fermentation Properties of Yulmoo Mulkimchi According to the Ratio of Water to Yulmoo (물비율을 달리한 열무 물김치의 발효특성)

  • 최성유;오지영;유정화;한영숙
    • Korean journal of food and cookery science
    • /
    • v.14 no.4
    • /
    • pp.327-332
    • /
    • 1998
  • In the fermentation of Yulmoo Mulkimchi, various ratios of Yulmoo to water (l/l.14, l/l.5, 1/2, l/2.75, 1/4) were prepared and fermented at 4$^{\circ}C$, 15$^{\circ}C$, 25$^{\circ}C$ for up to 10 days. According to the fermentation time, the pH, acidity, total vitamin C content and microbial growth in Mulkimchi samples were determined together with sensory evaluation. Fermentation temperature on water addition ratio didn't show any difference in pH and microbial growth of Mulkimchi. However, low ratio of water resulted in high acidity and vitamin C content in Mulkimchi. In terms of acid odor and acid taste, the least water addition (l/l.4) sample was significantly strong than those of other samples. The ratio of Yulmoo to water, l/2 showed the highest overall sensorial acceptability and followed by l/l.5, l/l.4, l/2.75 and 1/4 samples. It was found that the content of vitamin C and acid taste of Mulkimchi have correlation with its acceptability.

  • PDF

Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures (목질탄화물 내의 화학 결합 변화)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Cho, Sung-Taig;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • Properties and chemical bonding of wood charcoal were investigated to understand the chemistry occurring in wood carbonization. From the pH changes of wood charcoal, it is revealed that it becomes acidic to weakly basic for charcoal carbonized at about $300^{\circ}C$, whereas it turns to basic at higher carbonization temperature higher than $600^{\circ}C$. Also, the ratio of carbon atoms in the charcoal was increased with increasing the carbonization temperature, while those of oxygen and hydrogen atoms. This tendency was significant when the carbonization temperature was increased up to $600^{\circ}C$ and the ratio changes of the atoms became stable at above $600^{\circ}C$. In the changes of chemical bonding, the ratio of C-C bonding was increased and those of C-O-H and C-O-R bonding was decreased significantly. It is considered that bondings connected to oxygen atoms tends to be broken, and the ratio of C-C bonding increased. Consequently, it is expected that this change may causes occurrence of new functional groups. In addition to that, it seems to be that the chemical bondings undergo the partial decomposition, formation, and recombination steps, Because ratio of C=O bonding tended to be increased or decreased by increasing the carbonization temperature. This understanding of chemical bond changes in charcoal can be a compensative consideration on the knowledges made only by physical parameters in the properties of micro-pore which has limited to explain the phenomenon. Also, it is considered that this can be treated as a basic knowledge for upgrading and development of use of wood charcoal.

Self-Healing Properties in Cracking of Blast Furnace Slag Cement Paste (고로 슬래그 시멘트 페이스트 균열에서의 자기치유 특성)

  • Lee, Seung-Heun;Kang, Kook-Hee;Lim, Young-Jin;Lee, Se-Jin;Park, Byeong-Seon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • This study investigated the self-healing properties of blast furnace slag cement paste sample with $Na_2SO_4$ as a blast furnace slag activator after conducting the permeability test. Self-healing properties were examined by crack filling ratio and quantification of self-healing products. The degree of self-healing was evaluated by the crack filling ratio, and the crack filling ratio was analyzed by panoramic analysis using BSE-DIP for objectivity. The average crack filling ratio showed a tendency of decreasing from the upper part of the specimen to the lower part as the average of the top part was 18%, the middle part was 7% and the bottom part was 5% on average. The maximum crack filling ratio was 44% and the minimum crack filling ratio was 3%. The residual self-healing product after the permeability test contained a large amount of Ca element and Al element derived from the blast furnace slag, and the Si element was mainly present near the crack surface. The most abundant minerals in self-healing products were about 68% C-A-H. $CaCO_3$ was about 13% and C-A-S-H was about 8%. Three minerals accounted for 90% of self-healing products. C-A-H was mainly present at a part slightly distant from the crack surface and showed an angular or acicular shape. The C-A-S-H was generated on the surface naturally connected to the existing specimen, and the $CaCO_3$ was generally observed on the surface of the specimen or the inside of the crack.

Ball-milling Effect on the Sinterability of the $UO_2$ ex-AUC Powder (AUC 공정으로 변환된 $UO_2$ 분말의 소결성에 미치는 Ball-milling효과)

  • Kim, H.S.;Park, C.H.;Park, C.J.;Choi, C.B.;Jung, S.H.;Suk, H.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.190-196
    • /
    • 1994
  • In order to investigate the ball-milling effect on the property changes of UO$_2$ ex-AUC powder, the sinterability of ball -milled powder was studied in terms of the ball -milling time. Spherical shape was found to be kept for ball-milled UO$_2$ powder and the particle size showed a bimodal distribution, which seems to have a higher packing ratio compared with those having monomodal gaussian distribution. The increase of sintered density of the ball -milled UO$_2$ powder is assumed to be mainly affected by the packing ratio, which increase with longer ball -milling time. It is confirmed that the sinterability of UO$_2$ ex-AUC powder is improved by the ball-milling process.

  • PDF

Hydrogenation of Phenylacetylene to Styrene on Pre-CxHy- and C-Covered Cu(111) Single Crystal Catalysts

  • Sohn, Young-Ku;Wei, Wei;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1559-1563
    • /
    • 2011
  • Thermal hydrogenation of phenylacetylene (PA, $C_8H_6$) to styrene ($C_8H_8$) on pre-$C_xH_y$- and C-covered Cu(111) single crystal substrates has been studied using temperature-programmed desorption (TPD) mass spectrometry. Chemisorbed PA with an acetylene group has been proved to be associated with hydrogen of pre-adsorbed $C_xH_y$ to form styrene (104 amu) on Cu surface. For the parent (PA) mass (102 amu) TPD profile, the TPD peaks at 360 K and 410 K are assigned to chemisorbed vertically aligned PA and flat-lying cross-bridged PA, respectively (J. Phys. Chem. C 2007, 111, 5101). The relative $I_{360K}/I_{410K}$ TPD ratio dramatically increases with increasing pre-adsorbed $C_xH_y$ before dosing PA, while the ratio does not increase for pre-C-covered surface. For PA on pre-$C_xH_y$-covered Cu(111) surface, styrene desorption is enhanced relative to the parent PA desorption, while styrene formation is dramatically quenched on pre-C-covered (lack of adsorbed hydrogen nearby) surface. It appears that only cross-bridged PA associates with adsorbed hydrogen to form styrene that promptly desorbs at 410 K, while vertically aligned PA is less likely to participate in forming styrene.

Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates

  • Ahn, Junmo;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • The effects of carbon-to-nitrogen (C/N) ratio in simulated rice straw hydrolysates using glucose and ammonium chloride on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator was investigated. In general, PHA accumulation rate was higher under higher degrees of N-deficient conditions (e.g., C/N ratio of 360:1) than lower degrees of N-deficient conditions (e.g., C/N ratio of 3.6:1 and 36:1). Also, the most PHA accumulation was observed during the first 12 h after the PHA accumulation initiation. This study showed that the similar PHA accumulation could be achieved by using different accumulation periods depending on C/N ratios. N source presence was important for new cell production, supported by approximately ten times greater PHA accumulation under the N-deficient condition ($NH_4Cl$ 0.01 g/L) than the N-free (without $NH_4Cl$) condition after 96 h. C/N ratio of the rice straw hydrolysate was approximately 160:1, based on the glucose content, and this accumulated $0.36{\pm}0.0033g/L$ PHA with PHA content of $21{\pm}3.1%$ after 12 h. Since external C or N source addition for C/N ratio adjustment increases production cost, an appropriate accumulation period may be used for PHA accumulation from organic wastes, based on the PHA accumulation patterns observed at various C/N ratios and C and N concentrations.

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

X-ray diffraction and electrochemical properties of cathode active material LiMn$_2$O$_4$ for Lithium rechargeable batteries (리튬 2차 전지용 정극 활물질 LiMn$_2$O$_4$의 X-선 회절 분석 및 전기화학적 특성)

  • 정인성;성창호;박계춘;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.107-110
    • /
    • 1997
  • LiMn$_2$O$_4$ is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$ (mole ratio 1 ; 1) and heating at 80$0^{\circ}C$, $700^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. We obtained through X-ray diffraction that lattice parameter varied as function of calcined temperature and time. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, (111)/(311) peak ratio was 0.37. It showed good charge/discharge characteristics. When (111)/(311) peak ratio was 0.37, it was that crystal structure is formed very well. In the result of charge/discharge test, when heated at 80$0^{\circ}C$ for 36h, charge/discharge characteristics of LiMn$_2$O$_4$ is the best.

  • PDF

Structural Control of the Compound Layers formed during Nitrocarburising in NH3-Air-C3H8 Atmospheres (NH3-Air-C3H8 분위기에서 Nitrocarburisng시 형성된 Compound Layer의 조직제어)

  • Kim, Y.H.;Choi, K.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.289-301
    • /
    • 1995
  • The effect of Air/$C_3H_8$ gas addition on the compound layer growth of steels nitrocarburised in $NH_3+Air+C_3H_8$ mixed gas atmospheres was investigated. It is considered that amount of residual $NH_3$ was varied according to alternation of Air/$C_3H_8$ mixing ratio and volume content. The compound layer formed from nitrocarburising was composed of ${\varepsilon}-Fe_{2-3}$(C, N) and ${\gamma}^{\prime}-Fe_4$(C, N). According as Air/$C_3H_8$ mixing ratio increased, the superficial content of ${\gamma}^{\prime}-Fe_4$(C, N) within the compound layer was increased, at the same time the growth rate of compound layer and porous layer was increased. In the case of alloy steel at the fixed gas composition, the growth rate of compound layer and porous layer was worse than carbon steel and compound layer phase composition structure primarily consisted of E phase. As the carbon content of materials was increasing in the given gas atmospheres, the growth rate of compound layer and porous layer was increased and the superficial content of ${\varepsilon}-Fe_{2-3}$(C, N) within the compound layer was increased.

  • PDF