• Title/Summary/Keyword: C/C0 ratio

Search Result 553, Processing Time 0.027 seconds

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.

Magnetoimpedance Effect in Nanocrystalline Fe91.5-xZr7BxCu1Al0.5 (x=2, 4, 6, 8) Alloys

  • Lee, Heebok;Kim, Yong-Kook;Kim, Taik-Kee;Kim, Chong-Oh;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.21-23
    • /
    • 2002
  • The magnetoimpedance of $Fe_{91.5-x}Zr_7B_xCu_1Al_{0.5}$alloys has been measured to investigate the influence of structural changes in the nanocrystallization process after thermal treatment. Annealing was performed at temperatures of $350^\circ{C}$, $450^\circ{C}$, and $550^\circ{C}$ for 1 hour in a vacuum. Ultra soft magnetic behavior was observed in the samples annealed at $550^\circ{C}$. The magnetoimpedance ratio and the longitudinal permeability ratio coincided with the softness of the magnetic properties of the thermally treated samples.

Effects Of Oxygen Enrichment on the Structure of CH4/CHCI3/O2N2 Premixed Flames (CH4/CHCI3/O2N2 예혼합 화염 구조에서 산소부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.893-900
    • /
    • 2003
  • Numerical simulations of freely propagating flames burning stoichiometric C $H_4$/CHC1$_3$/ $O_2$/$N_2$ mixtures are performed at atmospheric pressure in order to understand the effect of the $O_2$ enrichment level and the CHC1$_3$/C $H_4$ molar ratio. A chemical kinetic mechanism is developed, which involves 69 gas-phase species and 379 forward and 364 backward reactions. The calculated flame speeds are compared with the experiments for the flames established at several CHC1$_3$/C $H_4$ molar ratio (R<1), the results of which is in excellent agreement. As a results of the increased $O_2$ enrichment level from 0.21 to 1, the flame speed and the temperature in the burned gas are increased. At high CHC1$_3$/C $H_4$ molar ratio two peak values appear on the $O_2$ consumption rate, which are affected by CC1$_2$$O_2$$_{-}$>C1O+CC1O and H+ $O_2$$_{-}$>O+OH.+OH.

Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 System Ceramics

  • Yoo, Ju-Hyun;Lee, Sang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.121-124
    • /
    • 2009
  • In this study, in order to develop compositions of ceramics suitable for piezoelectric actuator and ultrasonic vibrator applications using low temperature sintering, multilayer, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids. Their structural, piezoelectric and dielectric characteristics were investigated according to the Zr/Ti ratio. As the Zr/Ti ratio increased, the electromechanical coupling factor $k_p$, and piezoelectric constant $d_{33}$ and the mechanical quality factor $Q_m$ all increased with Zr/Ti ratio and then decreased after the ratio exceeded 50/50. At the ratio of Zr/Ti =49/51 and sintering temperature of $900^{\circ}C$; the density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$ piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ all showed the optimum values of 7.900 $g/cm^3$, 0.576, 856, 312 pC/N, 1,326, respectively. These property values are very suitable for multilayer ceramics actuator applications.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Effects of Nb2O5 and MnO2 on the PTCR behavior of Lead-free Ba0.99(Bi1/2Na1/2)0.01TiO3 Ceramics (무연 Ba0.99(Bi1/2Na1/2)0.01TiO3 세라믹의 PTCR 특성에 미치는 Nb2O5와 MnO2의 효과)

  • Park, Yong-Jun;Nahm, Sahn;Lee, Young-Jin;Jeong, Young-Hun;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.638-644
    • /
    • 2008
  • The effects of $Nb_2O_5$ and $MnO_2$ on the positive temperature coefficient of resistivity (PTCR) behavior of lead-free $Ba_{0.99}(Bi_{1/2}Na_{1/2})_{0.01}TiO_3$ (BaBiNT) ceramics were investigated in order to fabricate a PTC thermistor available at high temperature of > $120^{\circ}C$. In particular, 0.05 mol% $Nb_2O_5$ added BaBiNT ceramic, which has significantly increased Curie temperature (Tc) of $160^{\circ}C$, showed good PTCR behavior; low resistivity at room temperature $(\rho_r)$ of $80.1{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $5.65{\times}10^3$ and a large resistivity temperature factor (a) of 18.5%/$^{\circ}C$. Furthermore, the improved $\rho_{max}/\rho_{min}$ of $6.48{\times}10^4$ and a of 25.4%/$^{\circ}C$ along with higher $T_c$ of $167^{\circ}C$ despite slightly increased $\rho_r$ of $569{\Omega}{\cdot}cm$, could be obtained for the BaBiNT + 0.05 mol% $Nb_2O_5$ + 0.02 wt% $MnO_2$ ceramic cooled down at a rate of $200^{\circ}C/h$.

Positive Temperature Coefficient of Resistivity(PTCR) Behavior of Nb2O5 Added Ba0.99(Bi0.5Na0.5)0.01TiO3 Ceramics as a Function of Sintering Time (Nb2O5 첨가와 소결시간에 따른 Ba0.99(Bi0.5Na0.5)0.01TiO3 세라믹스의 PTCR 특성)

  • Oh, Young-Kwang;Choi, Seung-Hun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.559-562
    • /
    • 2011
  • In this study, the effect of $Nb_2O_5$ and sintering time on the positive temperature of coefficient of resistivity (PTCR) behavior of lead free $Ba_{0.99}(Bi_{0.5}Na_{0.5})_{0.01}TiO_3$ (BBNT) ceramics were investigated in order to fabricate a PTC thermistor with high $T_c$ temperature more than $140^{\circ}C$. In particular, BBNT ceramic doped with 0.1mol% $Nb_2O_5$ and sintered at $1350^{\circ}C$ for 4 h has significantly increased Curie temperature ($T_c$) of about $200^{\circ}C$, showed good PTCR behavior of room-temperature resistivity ($\rho_{rt}$) of $40{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $43.78{\times}10^3$ and a large resistivity temperature factor (${\alpha}$) of 16.1%/$^{\circ}C$. With increasing addition of $Nb_2O_5$ content, the $\rho_{rt}$ decreased to a minimum value of $40\;{\Omega}cm$ at 0.1mol% $Nb_2O_5$ and the $\rho_{rt}$ increased for x value over 0.1 mol%.

Effect of Mg Additive in the Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K phase) Superconductors (Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K 상)산화물 고온초전도체에 Mg 첨가에 따른 영향)

  • 이민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.522-531
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{\delta}}$ high- $T_{c}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with MgO of 5~30 wt% each were sintered at 820~86$0^{\circ}C$ for 24 hours. The structural characteristics, critical temperature, grain size and image of mapping with respect to MgO contents were analyzed by XRD(X-Ray Diffraction), SEM(Scanning Electron Microscope) and EDS(Energy dispersive X-ray spectrometer) respectively. As MgO contents increased, intensity of MgO Peaks and ratio of Bi-2212 phase in superconductors intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.