• Title/Summary/Keyword: C/A Gold codes

Search Result 3, Processing Time 0.018 seconds

Delayed Parallel Interference Cancellation for GPS C/A Code Receivers

  • Glennon, Eamonn P.;Bryant, Roderick C.;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.261-266
    • /
    • 2006
  • A number of different techniques are available to mitigate the problem of cross correlations caused by the limited dynamic range of the 10-bit Gold codes in the GPS C/A code. These techniques include successive-interference cancellation (SIC) and parallel-interference cancellation (PIC), where the strong signals are subtracted at IF prior to attempting to detect the weak signals. In this paper, a variation of these techniques is proposed whereby the subtraction process is delayed until after the correlation process, although still employing a pure reconstructed C/A code signal to permit prediction of the cross correlation process. The paper provides details on the method as well as showing the results obtained when the method was implemented using a software GPS receiver. The benefits of this approach are also described, as is the application of the method to the cancellation of CW interference.

  • PDF

A Study on the Design and Implementation of a DSSS-based MODEM for a Right Termination System(FTS) (대역확산방식 비행종단시스템의 모뎀설계와 구현에 관한 연구)

  • Lim Keumsang;Kim Jaehwan;Cho Hyangduck;Kim Wooshik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.175-183
    • /
    • 2006
  • This letter proposes a Direct Sequence Spread Spectrum (DS-SS)-based Flight Termination System(FTS) and show the simulation results and implements the system using FRGAs. The DS-SS FTS has immunity interference signals and the influence of jamming signal. Moreover, a DS-SS FTS can provides effects on an authentication and encryption with spread codes. And the system uses more less power than an analog FM system. We used Reed-Solomon (32, 28) code and triple Data Encryption Standard(3DES) for error correction and data encryption. Also we used counter algorithm for unauthenticated device's attack The spread codes of In-phase channel and Quadrature channel were generated by Gold sequence generators. The system was implemented in Altera APEX20K100E FPGA for the ground system and EPF10K100ARC240-3 for the airborne system.

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF