• Title/Summary/Keyword: Buttock angle

Search Result 5, Processing Time 0.019 seconds

Characteristics of Somatotype for Boys of Elementary School Age II -Characteristics of factor for upper and lower half in Each Period of School Ages- (학령기(만 7세-만 12세) 남아의 체형특성II-학령기별 상.하반식 체형구성인자특성을 중심으로-)

  • 권영숙
    • Journal of the Korean Society of Costume
    • /
    • v.49
    • /
    • pp.25-48
    • /
    • 1999
  • The purpose of this study is to offer fundamental data for classification of somatotype for boys of elementary school age. The subject were 458 elementary school boys aged from 7 to 12 living in Pusan, Data were collected by 57 anthropometric and 11 photographic measurements and analyzed by factor analysis according to SAS package 1. Through the factor analysis by each period of school ages 6-7 factor were obtained in upper half and they are as followings: 1) Factor 1 is horizontal size of upper half in every period 2) Factor 2 is vertical size of upper half in every period 3) Factor 3 is shoulder shape in the first period and length of upper half in the middle and latter period 4) Facto 4 sis length of upper half in the first period and shoulder shape in the middle and latter period 5) Factor 5 is angle shape of the breast and back in the first period angle shape of the lower breast and back in the middle of period and angle shape of the upper breast and back in the latter of period 6) Factor 6 is angle of shoulder in the first period angle shape of the upper breast and back in the middle of period and angle shape of the lower breast and back in the latter of period 7)Factor 7 is angle of shoulder in the latter of period 2. Through the factor analysis by each period of school ages 5-6 factor were obtained in lower half and they are as followings: 1) factor 1 is horizontal size of upper half in every period 2) Factor 2 is vertical size of upper half in every period 3) Pactor 3 is angle shape of the belly and upper buttock in the first period and length of lower half in the middle and latter period 5) Factor 5 is angle shape of the lower buttock in the first period angle shape of the upper belly and buttock in the middle of period and angle of the side posture in the latter of period 6) Factor 6 is angle shape of the lower buttock in the middle of period and angle shape of the lower belly and buttock

  • PDF

Suggestion of a design load equation for ice-ship impacts

  • Choi, Yun-Hyuk;Choi, Hye-Yeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.386-402
    • /
    • 2012
  • In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.

Comparison of Buttock Pressure and Pelvic Tilting Angle During Typing in Subjects With and Without Unilateral Low Back Pain

  • Hwang, Ui-Jae;Kim, Si-Hyun;Choi, Houng-Sik;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • Asymmetric sitting posture may cause asymmetric buttock pressure and unilateral low back pain (LBP). The purpose of this study was to compare the differences of buttock pressure between both sides, and pelvic angle (sagittal and coronal planes) during typing in a sitting position on a pressure mat (Baltube) in individuals with and without unilateral LBP. Ten subjects with unilateral LBP and ten subjects without unilateral LBP were recruited for this study. Buttock pressure was measured using a pressure mat and pelvic angles were measured using a palpation meter. The subjects performed typing in a sitting posture for 30 minutes. Pressure data were collected and averaged at initial term (from start to first minutes) and final term (last minutes of 30 minutes). Angles of pelvic tilting were measured after 30 minutes typing. Pressure asymmetry values (difference in pressure between both sides) were calculated at the initial and final terms. A two-way analysis of variance was used to compare the differences between the initial and final pressure asymmetry values in subjects with and without unilateral LBP. An independent t-test was applied to compare the pelvic tilt angles between the two groups. To compare the change of pressure from the initial term to the final term between the symptomatic and asymptomatic sides in the unilateral LBP group, a paired t-test was applied. In the unilateral LBP group, the pressure asymmetric value at the final term was significantly greater than that of the initial term (p<.05). The angle of pelvic tilting in coronal plane was significantly greater in the unilateral back pain group compared to the without unilateral LBP group (p<.05), however, there was no significant difference in the angle of pelvic tilting in the sagittal plane between the two groups (p>.05). In the unilateral LBP group, the change of pressure from the initial term to the final term was significantly less in the symptomatic side (-6.90 mmHg) than the asymptomatic side (5.10 mmHg). This asymmetric sitting posture may contribute to unilateral LBP in the sitting position. Further studies are needed to determine if asymmetric weight bearing in sitting causes unilateral LBP or if unilateral back pain causes asymmetric weight bearing, and if the correction of asymmetric weight bearing in sitting can reduce unilateral LBP.

A Comparison of Pelvic, Spine Angle and Buttock Pressure in Various Cross-legged Sitting Postures (다양한 다리 꼬아 앉은 자세에 따른 골반과 척추 각도 및 볼기 압력 비교)

  • Kang, Sun-Young;Kim, Seung-Hyeon;Ahn, Soon-Jae;Kim, Young-Ho;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The purpose of this study was to investigate the kinematic and kinetic changes that may occur in the pelvic and spine regions during cross-legged sitting postures. Experiments were performed on sixteen healthy subjects. Data were collected while the subject sat in 4 different sitting postures for 5 seconds: uncrossed sitting with both feet on the floor (Posture A), sitting while placing his right knee on the left knee (Posture B), sitting by placing right ankle on left knee (Posture C), and sitting by placing right ankle over the left ankle (Posture D). The order of the sitting posture was random. The sagittal plane angles (pelvic tilt, lumbar A-P curve, thoracic A-P curve) and the frontal plane angles (pelvic obliquity, lumber lateral curves, thoracic lateral curves) were obtained using VICON system with 6 cameras and analyzed with Nexus software. The pressure on each buttock was measured using Tekscan. Repeated one-way analysis of variance (ANOVA) was used to compare the angle and pressure across the four postures. The Bonferroni's post hoc test was used to determine the differences between upright trunk sitting and cross-legged postures. In sagittal plane, cross-legged sitting postures showed significantly greater kyphotic curves in lumbar and thoracic spine when compared uncrossed sitting posture. Also, pelvic posterior tilting was greater in cross-legged postures. In frontal plane, only height of the right pelvic was significantly higher in Posture B than in Posture A. Finally, in Posture B, the pressure on the right buttock area was greater than Posture A and, in Posture C, the pressure on the left buttock area was greater than Posture A. However, all dependent variables in both planes did not demonstrate any significant difference among the three cross-legged postures (p>.05). The findings suggest that asymmetric changes in the pelvic and spine region secondary to the prolonged cross-legged sitting postures may cause lower back pain and deformities in the spine structures.

Effect of Sagittal Pelvic Tilt on Kinematic Changes of Hip and Knee Joint During Sit-to-Stand (일어서기 동작 시 시상면 골반 기울임이 엉덩관절과 무릎관절의 운동형상학에 미치는 영향)

  • Lim, In-Hyuk;Choi, Bo-Ram;Kim, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.26-37
    • /
    • 2011
  • Although there have been various studies related to the body's movement from a sitting to a standing position (sit-to-stand task), there is limited information on the kinematic changes on the frontal and transverse planes. The purpose of this study was to ascertain how pelvic tilt affects kinematic changes in the frontal and transverse planes in the hip and knee joints during a sit-to-stand task. For this study, 33 healthy participants (13 female) were recruited. Each participant rose from a sitting to a standing posture at his or her preferred speed for each of three different pelvic tilt trials (anterior, posterior, and neutral), and the measured angles were analyzed using a 3-D motion analysis system. A one-way repeated measure analysis of variance was performed with Bonferroni's post hoc test. In addition, an independent t-test was carried out to determine the sex differences in hip and knee joint kinematic changes during the sit-to-stand tasks. The results were as follows: 1) The hip and knee joint angle in the frontal and transverse planes showed a significant difference between the different pelvic tilt postures during sitting in the pre-buttock lift-off phase (pre-LO) (p<.05). Compared to the posterior pelvic tilt posture, the anterior pelvic tilt posture involved significantly greater hip joint adduction and internal rotation, knee joint adduction, and reduced internal rotation of the knee joint. 2) Sex differences were found with significant differences for males in the initial and maximal angles in the frontal plane of the hip and knee joint (p<.05). Females had a significantly smaller initial abduction angle of the hip joint and a significantly greater maximal angle of the hip adduction joint. These results suggest that selecting a sit-to-stand exercise for pelvic tilt posture should be considered to control abnormal movement in the lower extremities.