• Title/Summary/Keyword: Butterworth Digital Filter

Search Result 28, Processing Time 0.021 seconds

Real Time 1/3 Octave Band Control System for High Intensity Acoustic Chamber (음향 챔버 내부의 1/3 옥타브 스펙트럼 실시간 제어 시스템)

  • Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.881-885
    • /
    • 2002
  • This paper presents the performance and the algorithm of a 1/3-octave band spectrum control system. The system is developed to provide various spectrums in a high intensity acoustic chamber. The required spectrum, which usually comes from launch vehicle company, starts from 25Hz band and ends 10kHz band. Automatic spectrum control system is preferred since the system requires short settling time to guarantee the safety of test objects and to reduce the amount of operating gas. The developed system adapted a PCI data-acquisition/signal-generation board installed in a personal computer to implement whole control logic. The control software used three cascade digital Butterworth filters using software. The filers are designed following ANSI S1.11 standard to implement 1/3 octave band filter bank. The graphical user interface of the system guides the user to follow standard operation procedure. The averaged control spectrum showed less than 0.05 dB in every running 1/3-octave band.

  • PDF

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

The Kinematic Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동학적 분석)

  • Yeo, Hong-Chul;Yoon, Hee-Joong;Ryu, Ji-Seon;Jung, Chul-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2003
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to postflight of salto forward straight 3/2 turn motion between skitters and less-skitters. four S-VHS video cameras operating at 60Hz were used to record the performances. five elite male gymnasts were participated in this study as subjects. three-dimensional coordinates of 20 body landmarks during each trial were collected using a Direct Linear Transformation method. The digitized body landmarks were smoothed using a Butterworth second order with low pass digital filter and a cutoff frequency of 10Hz. 1. A skitter, got a high score for performance, showed shorter time and faster horizontal velocity than a less-skitter at the board contact. also, a skitter extended quickly his knee and hip joint after contacting board for preflight phase. 2. A skitter revealed faster time and horizontal velocity the vault from taking off board than a less-skiller. A skitter took a long time and high distance to get the vertical peak compared with a less-skiller. 3. For the second phase, a skitter, who executes the most optimal motions among the subjects, displayed a long flight time, a high height, and a far flight distance as well as maintaining consistent horizontal speed even at the peak of post flight. On the other side, a less-scorer displayed a slow vertical velocity, distance and a short time at the point of take-off from vault as well as low height at the peak of post flight.

Comparison of Kinematic Variables of the Elite Woman's 100m Hurdler (엘리트 여자 100m 허들선수들의 운동학적 변인 비교)

  • Ryu, Jae-Kyun;Chang, Jae-Kwan;Yeo, Hong-Chul;Lim, Jung-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.149-156
    • /
    • 2007
  • The purpose of this study was to compare the world class women's hurdlers with kinematic variables Lee Yeon-Kyoung's in the 100m hurdle. Among korea elite female hurdler, Lee Yeon-Kyoung was participated as a subject. Eight JVC video cameras(GR-HD1KR) were used to film the performance of Lee Yeon-Kyoung at a frame rate of 60fields/s. The real-life three-dimensional coordinate data of digitized body landmarks were smoothed using a fourth order Butterworth low pass recursive digital filter with an estimated optimum cutoff frequency of 7.4Hz. After analyzing and comparing Lee Yeon Kyung's kinematic variables with the world top class hurdlers in the woman's 100m hurdle run, the following conclusions were obtained. 1. Lee should be able to increase the speed with over 5.4m/s from start to first hurdle and then maintain the speed range from 8.33m/s to 8.67m/s until 10th hurdle. Lee should have to maintain the speed with 8.51m/s from 10th hurdle to finish line. 2. Lee has to reach her maximum running speed at 5th hurdle and then has to shorten running time with 0.5sec between hurdles. 3. Lee should be able to run around 2.5sec from start to frist hurdle and then maintain under 1.00sec following phases. Lee should be able to maintain under 1.10sec from 10th hurdle to finish line. 4. Lee needs to control a consistent takeoff and landing distance pattern, Lee needs to lower the height of the center of gravity of the body with 0.33m when she clears the hurdles.

Lower Extremity Muscle Activity on the Obstacle Gait in Older Parkinson Diseases (파킨슨 환자들의 장애물 보행 향상을 위한 하지의 근육 활동 규명)

  • Lim, Bee-Oh;Kim, Mi-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2007
  • Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles in older Parkinson disease. The purpose of this study was to investigate the lower extremity muscle activity on the obstacle gait according to obstacle height in older Parkinson diseases. The obstacle gait of 7 older Parkinson disease was examined during a 5.0 m approach to, and while stepping over, obstacles of 0, 25, 52, and 152mm. Seven pairs of surface electrodes(Noraxon MyoResearch, USA) were attached to the right-hand side of the body to monitor the adductor longus(AL), gluteus medius(GME), gluteus maximus(GMA), biceps femoris(BF), rectus femoris(RF), gastrocnemius(GA), tibialis anterior(TA). Electromyography data were filtered using a 10Hz to 350 Hz Butterworth band-pass digital filter and normalized to the maximum value in the analyzed phases. A one-way ANOVA for repeated measures was employed for selected electromyography variables to analyze the differences of the height of four obstacles. The results showed significant differences between 0.0mm and 25, 52, and 152mm obstacle height in TA and GA activities during the second phase(swing phase). But the more increase obstacle height, the more not increase the muscle activities. This means that the Parkinson disease stepping over obstacle inefficiency. To prevent and reduce the frequency of falls, elderly Parkinson disease maintained and improved their balance, muscular strength, neuromuscular control and mobility.

The Mechanical Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동역학적 분석)

  • Yeo, Hong-Chul;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2004
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to preflight of salto forward straight 3/2 turn motion between skillers and less-skillers. four S-VHS video cameras operating at 60Hz were used to record the performances. Five elite male gymnasts were participated in this study as subjects. Three-dimensional coordinates of 21 body landmarks during each trial were collected using a Direct Linear Transformation method. The raw 3-D coordinates of the 21 body landmarks were smoothed using a second order lowpass, recursive Butterworth digital filter and a cutoff frequency of 10Hz. Load cells attached on the beneath of a board were used to attain the kinetic variables. It was found that the more angular momentum in the longitudinal axis, the less vertical velocity and these angular momentum effected the height of peak in the preflight. Also, it was revealed that the larger angular momentum in the medio-lateral axis was rather than it in the longitudinal axis to increase vertical height and rotation force of the body. For the reaction force of springboard, the vertical and the horizontal reaction force were 16.52BW and 3.45BW, respectively. It was found that the higher value of the vertical reaction force induced the faster vertical velocity and the higher an ar momentum. of the whole body center of gravity.

Analysis of golf swing motion for specific properties of club shaft (클럽 샤프트(Club Shaft) 특성에 따른 골프 스윙(Golf Swing)동작 분석)

  • Kim, Sung-Il;Kim, Ky-Hyoung;Kim, Hyung-Soo;Lee, Hyun-Seob;Kim, Jin-Uk;Ahn, Chan-Gyu;Kim, Hee-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2002
  • The purpose of this study was to find the rational method to analyze golf swing with specific property of club shaft. Three subjects were filmed by two high speed digital cameras with 500 fps. The phase analyzed was downswing of each subject. The three-dimensional coordinates of the anatomical landmarks were obtained with motion analysis system Kwon3d 3.0 version and smoothed by lowpass digital filter with cutoff frequency 6Hz. From these data, kinematic and kinetic variables were calculated using Matlab(ver 5.0) The variables for this study were angular velocity and accelerations, which were calculated and following conclusions have been made : 1) Golf swing time of stiff club is faster than that of regular club. 2) In shoulder joint motion of swing with the stiff club, x-stiff showed mort rapid negative acceleration than that of regular club. 3) In regular club, the velocity of club head would be more effective velocity, which was increasing, than those of other clubs before impact. 4) In wrist joint motion of swing with stiff club, x-stiff club showed faster than regular club in the downswing and impact more rapid negative acceleration.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.