• 제목/요약/키워드: Butt-Welded Joints

검색결과 80건 처리시간 0.027초

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

강교 도장용 블라스트 표면처리에 의한 용접이음의 피로강도 향상 (Improving Fatigue Strength of Weld Joints by Blast Cleaning used in Painting Steel Bridge)

  • 김인태;정영수;이동욱
    • 한국강구조학회 논문집
    • /
    • 제23권2호
    • /
    • pp.137-146
    • /
    • 2011
  • 강교 제작에는 녹, 흑피 등의 이물질 제거 및 도료의 부착성 증대를 위하여 도장 전 블라스트 표면처리가 실시되고 있지만, 이러한 강교 도장용 블라스트 처리가 용접이음의 피로강도에 미치는 영향에 대한 검토는 미흡한 실정이다. 이에 본 연구에서는 강교 제작시 사용되는 블라스트 처리조건에 의한 압축잔류응력 도입량을 정량적으로 평가하고, 압축잔류응력에 의한 용접이음의 피로강도 향상 정도를 검토하기 위하여, 먼저 국내 7개 강구조물 제작사의 블라스트 처리조건을 조사하였다. 이를 근거로 도출한 10가지의 블라스트 처리조건별 알멘스트립의 아크하이트와 강재시편의 표면조도, 경도 및 잔류응력을 측정하여, 이들 측정값과 블라스트 처리조건들과의 상관관계를 검토하여, 아크하이트 측정으로 압축잔류응력을 근사적으로 추정할 수 있음을 제시하였다. 그리고 블라스트 처리 전 후의 맞대기 용접이음의 압축잔류 응력 측정과 피로시험을 실시하여, 블라스트 처리에 의해 맞대기 용접이음부의 용접지단부에는 약 170MPa이상의 압축잔류응력이 발생하였으며, 이로 인하여 맞대기 용접이음의 피로강도는 용접부가 없는 원판 강재 이상으로 크게 향상됨을 확인하였다.

SS400용접 부위의 표면 피로균열거동에 관한 연구 (A study on surface fatigue crack behavior of SS400 welding Zone)

  • 이용복;조남익;박강은
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1995년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.214-217
    • /
    • 1995
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists near weld joints, SS400 steel with thickness of 12mm, which generally used for structure members, was submerged-arc welded with butt type and machined for both surface. The weld joints were devided into 5 regions, weld metal, boundary between heat affected zone (HAZ), HAZ, boundary between HAZ and base metal, and base metal. Specimens from each region were machined for a pit shaped initial surface defect with aspect ratio of 2. characteristics of surface fatigue crack por pagation from the defect under the same loading condition were compared and discussed.

  • PDF

이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발 (Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process)

  • 박희천;정호승;조종래;이낙규;오중석;한명섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

극후판 다층 FCAW 맞대기 용접부의 잔류응력 특성에 관한 연구 (A Study of the Residual Stress Characteristics of FCAW Multi-Pass Butt Joint for an Ultra-Thick Plate)

  • 방희선;방한서;이윤기;김현수;이광진
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.62-66
    • /
    • 2010
  • The goal of this work is to establish the reliability of FCA welded joints for high strength EH36-TMCP ultra thick plate. For this, heat conduction and thermo elasto-plastic analyses have been conducted on a multi-pass, X-groove, butt-joint model to clarify the thermal and mechanical behavior (residual stresses, magnitude of the stresses, and their production and distribution mechanisms) of the weld joint. In addition, the results of the welding residual stress obtained from thermo elasto-plastic analysis was verified and compared with results obtained by XRD analysis.

ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구 (A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel)

  • 백정환;최병기
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

티타늄과 금합금의 레이저 용접부의 인장강도 (TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS)

  • 송윤관;송광엽;하일수
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

SAW 맞대기 용접부의 야금학적 특성과 비드높이에 따른 피로강도 연구 (A Study on Metallurgical Properties and Fatigue Strength depending on Bead Height in SAW Butt Joints)

  • 이해우;신용택;박정웅;석한길
    • 대한조선학회논문집
    • /
    • 제35권3호
    • /
    • pp.62-70
    • /
    • 1998
  • 본 논문은 서브머지드 아크 2pole 용접시 용접비드 높이에 따른 피로강도와 야금학적 특성을 고찰하였다. AWS(American Welding Society) Code D1.1에 의하면 피로강도 측면에서 비드높이가 1/8"(3.2mm)를 초과하지 못하도록 규정하고 있으나, 실구조물 용접시 대부분 비드높이가 이 규정을 초과하고 있다. 따라서 보 연구에서는 as-weld상태에서의 피로시험편과 비드높이 3mm인 피로시험편을 제작하여 야금학적 고찰 및 피로강도를 비교 평가하였다.

  • PDF

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

이종마찰 접합계면부의 소성유동 방향성 및 강도 평가 (Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints)

  • 오정국;성백섭
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.