• Title/Summary/Keyword: Butenolide

Search Result 4, Processing Time 0.019 seconds

Enantiomeric Synthesis of Novel Apiosyl Nucleosides as Potential Antiviral Agents

  • Kim, Ai-Hong;Hong, Joon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.221-225
    • /
    • 2004
  • A series of 2',3'-dideoxy-3'-fluoro-D-apiosyl nucleosides 15, 16, 17 and 18 were synthesized enantiomerically with L-Gulonic- ${\gamma}$-lactone as the starting material. The reduction of butenolide 1 with DIBAL-H followed by the Luche procedure afforded the allylic alcohol 2. Ozonolysis and the reduction of compound 4 induced the cyclized lactol, which was acetylated to give the acetate 7. Condensation of the acetate 7 with silylated pyrimidine ($N^4$-benzoyl cytosine) and a purine base (6-chloropurine) under Vorbruggen conditions and deblocking afforded a series of fluorinated apiosyl nucleosides.

Unusual Transformation of Cyclobutenediones into Butenolides (Cyclobutenediones 에서 Butenolides로의 이색적인 반응)

  • Kwan Hee Lee;Harold W. Moore
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Butenolides are prepared from cyclobutenediones when cyclobutenediones are treated with lithium trimethylsilylacetylene, and quenched with water. A plausible mechanism, which contains an allene as an intermediate, is proposed. The usual diradical intermediate may not be formed because of the bulkiness of trimethylsilyl group, and the allenic intermediate may be stabilized by the ${\alpha}$-silyl group.

Bioassay-coupled LC-QTOF MS/MS to Characterize Constituents Inhibiting Nitric Oxide Production of Thuja orientalis

  • Park, Dawon;Shin, Hyeji;Byun, Youngjoo;Lee, Ki Yong
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • The ethyl acetate fractions prepared from the leaves of Thuja orientalis significantly inhibited nitric oxide (NO) production in lipopolysaccharide-stimulated BV2 microglial cells. According to bioassay-coupled LC-QTOF MS/MS, the components near 22 and 25 mins in the mass chromatogram highly inhibited NO production and were expected to be labdane diterpenes, and the active components were characterized via further isolation. The results of the NO production inhibitory assay of the isolated compounds correlated well with the results of bioassay-coupled LC-QTOF MS/MS. Among the identified constituents, NO production inhibitory activities of 16-hydroxy-labda-8(17),13-diene-15,19-dioic acid butenolide (2) and 15-hydroxypinusolidic acid (3) were newly reported. Taken together, these results demonstrated that LC-QTOF MS/MS coupled with NO production inhibition assay was a powerful tool for accurately predicting new anti-inflammatory constituents in the extracts from natural products. Moreover, it provided a potential basis for broadening the application of bioassay-coupled LC-QTOF MS/MS in natural product research.