• 제목/요약/키워드: Business management performance

Search Result 3,922, Processing Time 0.03 seconds

The Roles of Service Failure and Recovery Satisfaction in Customer-Firm Relationship Restoration : Focusing on Carry-over effect and Dynamics among Customer Affection, Customer Trust and Loyalty Intention Before and After the Events (서비스실패의 심각성과 복구만족이 고객-기업 관계회복에 미치는 영향 : 실패이전과 복구이후 고객애정, 고객신뢰, 충성의도의 이월효과 및 역학관계 비교를 중심으로)

  • La, Sun-A
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.1-36
    • /
    • 2012
  • Service failure is one of the major reasons for customer defection. As the business environment gets tougher and more competitive, a single service failure might bring about fatal consequences to a service provider or a firm. Sometimes a failure won't end up with an unsatisfied customer's simple complaining but with a wide-spread animosity against the service provider or the firm, leading to a threat to the firm's survival itself in the society. Therefore, we are in need of comprehensive understandings of complainants' attitudes and behaviors toward service failures and firm's recovery efforts. Even though a failure itself couldn't be fixed completely, marketers should repair the mind and heart of unsatisfied customers, which can be regarded as an successful recovery strategy in the end. As the outcome of recovery efforts exerted by service providers or firms, recovery of the relationship between customer and service provider need to put on the top in the recovery goal list. With these motivations, the study investigates how service failure and recovery makes the changes in dynamics of fundamental elements of customer-firm relationship, such as customer affection, customer trust and loyalty intention by comparing two time points, before the service failure and after the recovery, focusing on the effects of recovery satisfaction and the failure severity. We adopted La & Choi (2012)'s framework for development of the research model that was based on the previous research stream like Yim et al. (2008) and Thomson et al. (2005). The pivotal background theories of the model are mainly from relationship marketing and social relationships of social psychology. For example, Love, Emotional attachment, Intimacy, and Equity theories regarding human relationships were reviewed. As the results, when recovery satisfaction is high, customer affection and customer trust that were established before the service failure are carried over to the future after the recovery. However, when recovery satisfaction is low, customer-firm relationship that had already established in the past are not carried over but broken up. Regardless of the degree of recovery satisfaction, once a failure occurs loyalty intention is not carried over to the future and the impact of customer trust on loyalty intention becomes stronger. Such changes imply that customers become more prudent and more risk-aversive than the time prior to service failure. The impact of severity of failure on customer affection and customer trust matters only when recovery satisfaction is low. When recovery satisfaction is high, customer affection and customer trust become severity-proof. Interestingly, regardless of the degree of recovery satisfaction, failure severity has a significant negative influence on loyalty intention. Loyalty intention is the most fragile target when a service failure occurs no matter how severe the failure criticality is. Consequently, the ultimate goal of service recovery should be the restoration of customer-firm relationship and recovery of customer trust should be the primary objective to accomplish for a successful recovery performance. Especially when failure severity is high, service recovery should be perceived highly satisfied by the complainants because failure severity matters more when recovery satisfaction is low. Marketers can implement recovery strategies to enhance emotional appeals as well as fair treatments since the both impacts of affection and trust on loyalty intention are significant. In the case of high severity of failure, recovery efforts should be exerted to overreach customer expectation, designed to directly repair customer trust and elaborately designed in the focus of customer-firm communications during the interactional recovery process to affect customer trust rebuilding indirectly. Because it is a longer and harder way to rebuild customer-firm relationship for high severity cases, low recovery satisfaction cannot guarantee customer retention. To prevent customer defection due to service failure of high severity, unexpected rewards as a recovery will be likely to be useful since those will lead to customer delight or customer gratitude toward the service firm. Based on the results of analyses, theoretical and managerial implications are presented. Limitations and future research ideas are also discussed.

  • PDF

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.