• Title/Summary/Keyword: Business intelligence

Search Result 1,234, Processing Time 0.025 seconds

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

A Study of Factors Associated with Software Developers Job Turnover (데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석)

  • Jeon, In-Ho;Park, Sun W.;Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.191-204
    • /
    • 2015
  • According to the '2013 Performance Assessment Report on the Financial Program' from the National Assembly Budget Office, the unfilled recruitment ratio of Software(SW) Developers in South Korea was 25% in the 2012 fiscal year. Moreover, the unfilled recruitment ratio of highly-qualified SW developers reaches almost 80%. This phenomenon is intensified in small and medium enterprises consisting of less than 300 employees. Young job-seekers in South Korea are increasingly avoiding becoming a SW developer and even the current SW developers want to change careers, which hinders the national development of IT industries. The Korean government has recently realized the problem and implemented policies to foster young SW developers. Due to this effort, it has become easier to find young SW developers at the beginning-level. However, it is still hard to recruit highly-qualified SW developers for many IT companies. This is because in order to become a SW developing expert, having a long term experiences are important. Thus, improving job continuity intentions of current SW developers is more important than fostering new SW developers. Therefore, this study surveyed the job continuity intentions of SW developers and analyzed the factors associated with them. As a method, we carried out a survey from September 2014 to October 2014, which was targeted on 130 SW developers who were working in IT industries in South Korea. We gathered the demographic information and characteristics of the respondents, work environments of a SW industry, and social positions for SW developers. Afterward, a regression analysis and a decision tree method were performed to analyze the data. These two methods are widely used data mining techniques, which have explanation ability and are mutually complementary. We first performed a linear regression method to find the important factors assaociated with a job continuity intension of SW developers. The result showed that an 'expected age' to work as a SW developer were the most significant factor associated with the job continuity intention. We supposed that the major cause of this phenomenon is the structural problem of IT industries in South Korea, which requires SW developers to change the work field from developing area to management as they are promoted. Also, a 'motivation' to become a SW developer and a 'personality (introverted tendency)' of a SW developer are highly importantly factors associated with the job continuity intention. Next, the decision tree method was performed to extract the characteristics of highly motivated developers and the low motivated ones. We used well-known C4.5 algorithm for decision tree analysis. The results showed that 'motivation', 'personality', and 'expected age' were also important factors influencing the job continuity intentions, which was similar to the results of the regression analysis. In addition to that, the 'ability to learn' new technology was a crucial factor for the decision rules of job continuity. In other words, a person with high ability to learn new technology tends to work as a SW developer for a longer period of time. The decision rule also showed that a 'social position' of SW developers and a 'prospect' of SW industry were minor factors influencing job continuity intensions. On the other hand, 'type of an employment (regular position/ non-regular position)' and 'type of company (ordering company/ service providing company)' did not affect the job continuity intension in both methods. In this research, we demonstrated the job continuity intentions of SW developers, who were actually working at IT companies in South Korea, and we analyzed the factors associated with them. These results can be used for human resource management in many IT companies when recruiting or fostering highly-qualified SW experts. It can also help to build SW developer fostering policy and to solve the problem of unfilled recruitment of SW Developers in South Korea.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

Performance Improvement on Short Volatility Strategy with Asymmetric Spillover Effect and SVM (비대칭적 전이효과와 SVM을 이용한 변동성 매도전략의 수익성 개선)

  • Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.119-133
    • /
    • 2020
  • Fama asserted that in an efficient market, we can't make a trading rule that consistently outperforms the average stock market returns. This study aims to suggest a machine learning algorithm to improve the trading performance of an intraday short volatility strategy applying asymmetric volatility spillover effect, and analyze its trading performance improvement. Generally stock market volatility has a negative relation with stock market return and the Korean stock market volatility is influenced by the US stock market volatility. This volatility spillover effect is asymmetric. The asymmetric volatility spillover effect refers to the phenomenon that the US stock market volatility up and down differently influence the next day's volatility of the Korean stock market. We collected the S&P 500 index, VIX, KOSPI 200 index, and V-KOSPI 200 from 2008 to 2018. We found the negative relation between the S&P 500 and VIX, and the KOSPI 200 and V-KOSPI 200. We also documented the strong volatility spillover effect from the VIX to the V-KOSPI 200. Interestingly, the asymmetric volatility spillover was also found. Whereas the VIX up is fully reflected in the opening volatility of the V-KOSPI 200, the VIX down influences partially in the opening volatility and its influence lasts to the Korean market close. If the stock market is efficient, there is no reason why there exists the asymmetric volatility spillover effect. It is a counter example of the efficient market hypothesis. To utilize this type of anomalous volatility spillover pattern, we analyzed the intraday volatility selling strategy. This strategy sells short the Korean volatility market in the morning after the US stock market volatility closes down and takes no position in the volatility market after the VIX closes up. It produced profit every year between 2008 and 2018 and the percent profitable is 68%. The trading performance showed the higher average annual return of 129% relative to the benchmark average annual return of 33%. The maximum draw down, MDD, is -41%, which is lower than that of benchmark -101%. The Sharpe ratio 0.32 of SVS strategy is much greater than the Sharpe ratio 0.08 of the Benchmark strategy. The Sharpe ratio simultaneously considers return and risk and is calculated as return divided by risk. Therefore, high Sharpe ratio means high performance when comparing different strategies with different risk and return structure. Real world trading gives rise to the trading costs including brokerage cost and slippage cost. When the trading cost is considered, the performance difference between 76% and -10% average annual returns becomes clear. To improve the performance of the suggested volatility trading strategy, we used the well-known SVM algorithm. Input variables include the VIX close to close return at day t-1, the VIX open to close return at day t-1, the VK open return at day t, and output is the up and down classification of the VK open to close return at day t. The training period is from 2008 to 2014 and the testing period is from 2015 to 2018. The kernel functions are linear function, radial basis function, and polynomial function. We suggested the modified-short volatility strategy that sells the VK in the morning when the SVM output is Down and takes no position when the SVM output is Up. The trading performance was remarkably improved. The 5-year testing period trading results of the m-SVS strategy showed very high profit and low risk relative to the benchmark SVS strategy. The annual return of the m-SVS strategy is 123% and it is higher than that of SVS strategy. The risk factor, MDD, was also significantly improved from -41% to -29%.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

Relationships Among Employees' IT Personnel Competency, Personal Work Satisfaction, and Personal Work Performance: A Goal Orientation Perspective (조직구성원의 정보기술 인적역량과 개인 업무만족 및 업무성과 간의 관계: 목표지향성 관점)

  • Heo, Myung-Sook;Cheon, Myun-Joong
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.63-104
    • /
    • 2011
  • The study examines the relationships among employee's goal orientation, IT personnel competency, personal effectiveness. The goal orientation includes learning goal orientation, performance approach goal orientation, and performance avoid goal orientation. Personal effectiveness consists of personal work satisfaction and personal work performance. In general, IT personnel competency refers to IT expert's skills, expertise, and knowledge required to perform IT activities in organizations. However, due to the advent of the internet and the generalization of IT, IT personnel competency turns out to be an important competency of technological experts as well as employees in organizations. While the competency of IT itself is important, the appropriate harmony between IT personnel's business capability and technological capability enhances the value of human resources and thus provides organizations with sustainable competitive advantages. The rapid pace of organization change places increased pressure on employees to continually update their skills and adapt their behavior to new organizational realities. This challenge raises a number of important questions concerning organizational behavior? Why do some employees display remarkable flexibility in their behavioral responses to changes in the organization, whereas others firmly resist change or experience great stress when faced with the need to alter behavior? Why do some employees continually strive to improve themselves over their life span, whereas others are content to forge through life using the same basic knowledge and skills? Why do some employees throw themselves enthusiastically into challenging tasks, whereas others avoid challenging tasks? The goal orientation proposed by organizational psychology provides at least a partial answer to these questions. Goal orientations refer to stable personally characteristics fostered by "self-theories" about the nature and development of attributes (such as intelligence, personality, abilities, and skills) people have. Self-theories are one's beliefs and goal orientations are achievement motivation revealed in seeking goals in accordance with one's beliefs. The goal orientations include learning goal orientation, performance approach goal orientation, and performance avoid goal orientation. Specifically, a learning goal orientation refers to a preference to develop the self by acquiring new skills, mastering new situations, and improving one's competence. A performance approach goal orientation refers to a preference to demonstrate and validate the adequacy of one's competence by seeking favorable judgments and avoiding negative judgments. A performance avoid goal orientation refers to a preference to avoid the disproving of one's competence and to avoid negative judgements about it, while focusing on performance. And the study also examines the moderating role of work career of employees to investigate the difference in the relationship between IT personnel competency and personal effectiveness. The study analyzes the collected data using PASW 18.0 and and PLS(Partial Least Square). The study also uses PLS bootstrapping algorithm (sample size: 500) to test research hypotheses. The result shows that the influences of both a learning goal orientation (${\beta}$ = 0.301, t = 3.822, P < 0.000) and a performance approach goal orientation (${\beta}$ = 0.224, t = 2.710, P < 0.01) on IT personnel competency are positively significant, while the influence of a performance avoid goal orientation(${\beta}$ = -0.142, t = 2.398, p < 0.05) on IT personnel competency is negatively significant. The result indicates that employees differ in their psychological and behavioral responses according to the goal orientation of employees. The result also shows that the impact of a IT personnel competency on both personal work satisfaction(${\beta}$ = 0.395, t = 4.897, P < 0.000) and personal work performance(${\beta}$ = 0.575, t = 12.800, P < 0.000) is positively significant. And the impact of personal work satisfaction(${\beta}$ = 0.148, t = 2.432, p < 0.05) on personal work performance is positively significant. Finally, the impacts of control variables (gender, age, type of industry, position, work career) on the relationships between IT personnel competency and personal effectiveness(personal work satisfaction work performance) are partly significant. In addition, the study uses PLS algorithm to find out a GoF(global criterion of goodness of fit) of the exploratory research model which includes a mediating variable, IT personnel competency. The result of analysis shows that the value of GoF is 0.45 above GoFlarge(0.36). Therefore, the research model turns out be good. In addition, the study performs a Sobel Test to find out the statistical significance of the mediating variable, IT personnel competency, which is already turned out to have the mediating effect in the research model using PLS. The result of a Sobel Test shows that the values of Z are all significant statistically (above 1.96 and below -1.96) and indicates that IT personnel competency plays a mediating role in the research model. At the present day, most employees are universally afraid of organizational changes and resistant to them in organizations in which the acceptance and learning of a new information technology or information system is particularly required. The problem is due' to increasing a feeling of uneasiness and uncertainty in improving past practices in accordance with new organizational changes. It is not always possible for employees with positive attitudes to perform their works suitable to organizational goals. Therefore, organizations need to identify what kinds of goal-oriented minds employees have, motivate them to do self-directed learning, and provide them with organizational environment to enhance positive aspects in their works. Thus, the study provides researchers and practitioners with a matter of primary interest in goal orientation and IT personnel competency, of which they have been unaware until very recently. Some academic and practical implications and limitations arisen in the course of the research, and suggestions for future research directions are also discussed.