• Title/Summary/Keyword: Business Growth

Search Result 3,413, Processing Time 0.037 seconds

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

Open Skies Policy : A Study on the Alliance Performance and International Competition of FFP (항공자유화정책상 상용고객우대제도의 제휴성과와 국제경쟁에 관한 연구)

  • Suh, Myung-Sun;Cho, Ju-Eun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.2
    • /
    • pp.139-162
    • /
    • 2010
  • In terms of the international air transport, the open skies policy implies freedom in the sky or opening the sky. In the normative respect, the open skies policy is a kind of open-door policy which gives various forms of traffic right to other countries, but on the other hand it is a policy of free competition in the international air transport. Since the Airline Deregulation Act of 1978, the United States has signed an open skies agreement with many countries, starting with the Netherlands, so that competitive large airlines can compete in the international air transport market where there exist a lot of business opportunities. South Korea now has an open skies agreement with more than 20 countries. The frequent flyer program (FFP) is part of a broad-based marketing alliance which has been used as an airfare strategy since the U.S. government's airline deregulation. The membership-based program is an incentive plan that provides mileage points to customers for using airline services and rewards customer loyalty in tangible forms based on their accumulated points. In its early stages, the frequent flyer program was focused on marketing efforts to attract customers, but now in the environment of intense competition among airlines, the program is used as an important strategic marketing tool for enhancing business performance. Therefore, airline companies agree that they need to identify customer needs in order to secure loyal customers more effectively. The outcomes from an airline's frequent flyer program can have a variety of effects on international competition. First, the airline can obtain a more dominant position in the air flight market by expanding its air route networks. Second, the availability of flight products for customers can be improved with an increase in flight frequency. Third, the airline can preferentially expand into new markets and thus gain advantages over its competitors. However, there are few empirical studies on the airline frequent flyer program. Accordingly, this study aims to explore the effects of the program on international competition, after reviewing the types of strategic alliance between airlines. Making strategic airline alliances is a worldwide trend resulting from the open skies policy. South Korea also needs to be making open skies agreements more realistic to promote the growth and competition of domestic airlines. The present study is about the performance of the airline frequent flyer program and international competition under the open skies policy. With a sample of five global alliance groups (Star, Oneworld, Wings, Qualiflyer and Skyteam), the study was attempted as an empirical study of the effects that the resource structures and levels of information technology held by airlines in each group have on the type of alliance, and one-way analysis of variance and regression analysis were used to test hypotheses. The findings of this study suggest that both large airline companies and small/medium-size airlines in an alliance group with global networks and organizations are able to achieve high performance and secure international competitiveness. Airline passengers earn mileage points by using non-flight services through an alliance network with hotels, car-rental services, duty-free shops, travel agents and more and show high interests in and preferences for related service benefits. Therefore, Korean airline companies should develop more aggressive marketing programs based on multilateral alliances with other services including hotels, as well as with other airlines.

  • PDF

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

The Effects of Perceived Quality Factors on the Customer Loyalty: Focused on the Analysis of Difference between PB and NB (지각된 품질요인이 고객충성도에 미치는 영향: PB와 NB간의 차이분석)

  • Ye, Jong-Suk;Jun, So-Yon
    • Journal of Distribution Research
    • /
    • v.15 no.2
    • /
    • pp.1-34
    • /
    • 2010
  • Introduction As consumers' purchase behavior change into a rational and practical direction, the discount store industry came to have keen competition along with rapid external growth. Therefore as a solution, distribution businesses are concentrating on developing PB(Private Brand) which can realize differentiation and profitability at the same time. And as improvement in customer loyalty beyond customer satisfaction is effective in surviving in an environment with keen competition, PB is being used as a strategic tool to improve customer loyalty. To improve loyalty among PB users, it is necessary to develop PB by examining properties of a customer group, first of all, quality level perceived by consumers should be met to obtain customer satisfaction and customer trust and consequently induce customer loyalty. To provide results of systematic analysis on relations between antecedents influenced perceived quality and variables affecting customer loyalty, this study proposed a research model based on causal relations verified in prior researches and set 16 hypotheses about relations among 9 theoretical variables. Data was collected from 400 adult customers residing in Seoul and the Metropolitan area and using large scale discount stores, among them, 375 copies were analyzed using SPSS 15.0 and Amos 7.0. The findings of the present study followed as; We ascertained that the higher company reputation, brand reputation, product experience and brand familiarity, the higher perceived quality. The study also examined the higher perceived quality, the higher customer satisfaction, customer trust and customer loyalty. The findings showed that the higher customer satisfaction and customer trust, the higher customer loyalty. As for moderating effects between PB and NB in terms of influences of perceived quality factors on perceived quality, we can ascertain that PB was higher than NB in the influences of company reputation on perceived quality while NB was higher than PB in the influences of brand reputation and brand familiarity on perceived quality. These results of empirical analysis will be useful for those concerned to do marketing activities based on a clearer understanding of antecedents and consecutive factors influenced perceived quality. At last, discussions about academical and managerial implications in these results, we suggested the limitations of this study and the future research directions. Research Model and Hypotheses Test After analyzing if antecedent variables having influence on perceived quality shows any difference between PB and NB in terms of their influences on them, the relation between variables that have influence on customer loyalty was determined as Figure 1. We established 16 hypotheses to test and hypotheses are as follows; H1-1: Perceived price has a positive effect on perceived quality. H1-2: It is expected that PB and NB would have different influence in terms of perceived price on perceived quality. H2-1: Company reputation has a positive effect on perceived quality. H2-2: It is expected that PB and NB would have different influence in terms of company reputation on perceived quality. H3-1: Brand reputation has a positive effect on perceived quality. H3-2: It is expected that PB and NB would have different influence in terms of brand reputation on perceived quality. H4-1: Product experience has a positive effect on perceived quality. H4-2: It is expected that PB and NB would have different influence in terms of product experience on perceived quality. H5-1: Brand familiarity has a positive effect on perceived quality. H5-2: It is expected that PB and NB would have different influence in terms of brand familiarity on perceived quality. H6: Perceived quality has a positive effect on customer satisfaction. H7: Perceived quality has a positive effect on customer trust. H8: Perceived quality has a positive effect on customer loyalty. H9: Customer satisfaction has a positive effect on customer trust. H10: Customer satisfaction has a positive effect on customer loyalty. H11: Customer trust has a positive effect on customer loyalty. Results from analyzing main effects of research model is shown as

    , and moderating effects is shown as
    . Results This study is designed with 16 research hypotheses, Results from analyzing their main effects show that 9 of 11 hypotheses were supported and other 2 hypotheses were rejected. On the other hand, results from analyzing their moderating effects show that 3 of 5 hypotheses were supported and other 2 hypotheses were rejected. H1-1: (SPC: Standardized Path Coefficient)=-0.04, t-value=-1.04, p>. 05). H1-2: (${\Delta}\chi^2$=1.10, df=1, p> 0.05). H1-1 and H1-2 are rejected, so it is prove that perceived price is not a significant decision variable having influence on perceived quality and there is no significant variable between PB and NB in terms of influence of perceived price on perceived quality. H2-1: (SPC=0.31, t-value=3.74, p<. 001). H2-2: (${\Delta}\chi^2$=3.93, df=1, p< 0.05). H2-1 and H2-2 are supported, so it is proved that company reputation is a significant decision variable having influence on perceived quality and, in terms of influence of company reputation on perceived quality, PB has relatively stronger influence than NB. H3-1: (SPC=0.26, t-value=5.30, p< .001). H3-2: (${\Delta}\chi^2$=16.81, df=1, p< 0.01). H3-1 and H3-2 are supported, so it is proved that brand reputation is a significant decision variable having influence on perceived quality and, in terms of influence of brand reputation on perceived quality, NB has relatively stronger influence than PB. H4-1: (SPC=0.31, t-value=2.65, p< .05). H4-2: (${\Delta}\chi^2$=1.26, df=1, p> 0.05). H4-1 is supported, but H4-2 is rejected, Therefore, it is proved that product experience is a significant decision variable having influence on perceived quality and, on the other hand, there is no significant different between PB and NB in terms of influence of product experience on product quality. H5-1: (SPC=0.24, t-value=3.00, p<. 05). H5-2: (${\Delta}\chi^2$=5.10, df=1, p< 0.05). H5-1 and H5-2 are supported, so it is proved that brand familiarity is a significant decision variable having influence on perceived quality and, in terms of influence of brand familiarity on perceived quality, NB has relatively stronger influence than PB. H6: (SPC=0.91, t-value=19.06, p< .001). H6 is supported, so a fact that customer satisfaction increases as perceived quality increases is proved. H7: (SPC=0.81, t-value=7.44, p<. 001). H7 is supported, so a fact that customer trust increases as perceived quality increases is proved. H8: (SPC=0.57, t-value=7.87, p< .001). H8 is supported, so a fact that customer loyalty increases as perceived quality increases is proved. H9: (SPC=0.08, t-value=0.76, p> .05). H9 is rejected, so it is proved influence of customer satisfaction on customer trust is not significant. H10: (SPC=0.21, t-value=4.34, p< .001). H10 is supported, so a fact that customer loyalty increases as customer satisfaction increases is proved. H11: (SPC=0.40, t-value=5.68, p< .001). H11 is supported, so a fact that customer loyalty increases as customer trust increases is proved. Implications Although most of existing studies have used function, price, brand, design, service, brand name, store name as antecedent variables for perceived quality, this study used different antecedent variables in order to analyze and distinguish purchase group PB and NB through preliminary research. Therefore, this study may be used as preliminary data for a empirical study that is designed to be helpful for practical jobs. Also, this study is made to be easily applied to any practical job because SEM(Structural Equation Modeling), most strongly explaining the relation between observed variable and latent variable, is used for this study. This study suggests a new strategic point that, in order to increase customer loyalty, customer's perceived quality level should satisfied for inducing customer satisfaction, customer trust, and customer loyalty. Therefore, after finding an effective differentiating factors in perceived quality in order to increase customer loyalty through increasing perceived quality, this factor was made to be applied to PB and NB. Because perceived quality factors which is recognized as being important by consumers is different between PB and NB, this study suggests how to efficiently establish marketing strategy by enhancing a factor. Companies have mostly focused on profitability in terms of analyzing customer loyalty, but this study included positive WOM(word of mouth). Hence, this study suggests that it would be helpful for establishing customer loyalty when consumers have cognitive satisfaction and emotional satisfaction together. Limitations This study used variables perceived price, company reputation, brand reputation, product experience, brand familiarity in order to determine whether each constituent factor has different influence on perceived quality between purchase group PB and NB. These characteristic variables are made up on the basis of the preliminary research, but it is expected that more precise research result would be obtained if additional various variables are included in study. This study selected a practical product that is non-durable, low-priced and bestselling product in a discount store through the preliminary research because it can be easily estimated by consumers. Therefore. generalization of study would be more easily obtained if more various product characteristics is included. Regarding a sample used in this study, it was only based on consumers who purchase products in a large-scale discount store located in Seoul and in the capital area. Accordingly, this sample has some geographical limitation, If a study is expanded by including more areas, more representative research results may be produced. Because this study is only designed to analyze consumers who purchase a product in a large-scale discount store, some difference may be found according to characteristics of each business type. In other words, there is certainly some application limitation, so research result from this study may not be applied to other business types. Future research may have fruitful results if it adjusts a variable to each business type.

  • PDF
  • Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

    • Kim, Myeong-Kyun;Cho, Yoonho
      • Journal of Intelligence and Information Systems
      • /
      • v.18 no.4
      • /
      • pp.59-77
      • /
      • 2012
    • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

    A Study on Profitability of the Allianced Discount Program with Credit Cards and Loyalty Cards in Food & Beverage Industry (제휴카드 할인프로그램이 외식업의 수익성에 미치는 영향)

    • Shin, Young Sik;Cha, Kyoung Cheon
      • Asia Marketing Journal
      • /
      • v.12 no.4
      • /
      • pp.55-78
      • /
      • 2011
    • Recently strategic alliance between business firms has become prevalent to overcome increasing competitive threats and to supplement resource limitation of individual firms. As one of allianced sales promotion activities, a new type of discount program, so called "Alliance Card Discount", is introduced with the partnership of credit cards and loyalty cards. The program mainly pursues short-term sales growth by larger discount scheme while spends less through cost share among alliance partners. Thus this program can be regarded as cost efficient discount promotion. But because there is no solid evidence that it can really deliver profitable sales growth, an empirical study for its effects on sales and profit should be conducted. This study has two basic research questions concerning the effects of allianced discount program ; 1)the possibility of sales increase 2) the profitability of the discount driven sales. In F&B industry, sales increase mainly comes from increased guest count. Especially in family restaurants, to increase the number of guests we need to enlarge the size of visitor group (number of visitors for one group) because customers visit by group in a special occasion. And because they pay the bill by group(table), the increase of sales per table is a key measure for sales improvement. The past researches for price & discount sensitivity and reference discount rate explain that price sensitive consumers have narrow reference discount zone and make rational purchase decision. Differently from all time discount scheme of regular sales promotions, the alliance card discount program only provides the right to get discount like discount coupon. And because it is usually once a month opportunity given by the past month usage level, customers tend to perceive alliance card discount as a rare chance to get. So that we can expect customers try to maximize the discount effect when they use the limited discount opportunity. Considering group visiting practice and low visit frequency of family restaurants, the way to maximize discount effect should be the increase the size of visit group. And their sensitivity to discount and rational consumption behavior defer the additional spending for ordering high price menu, even though they get considerable amount of savings from the discount. From the analysis of sales data paid by alliance discount cards for four months, we found the below. 1) The relation between discount rate and number of guest per table is positive : 25% discount results one additional guest 2) The relation between discount rate and the spending per guest is negative. 3) However, total profit amount per table is increased when discount rate is increased. 4) Reward point accumulation & redemption did not show any significant relationship with the increase of number of guests. These results suggest that the allianced discount program substantially contributes to sales increase and profit improvement by increasing the number of guests per table. Though the spending per guest is decreased by discount rate increase, the total amount of profit per table is improved. It seems the incremental profit by increased guest count offsets the profit decrease. Additional intriguing finding is the point reward system does not have any significant impact on the increase of number of guest, even if the point accumulation & redemption of loyalty program are usually regarded as another saving offers by customers. In sum, because it is proved that allianced discount program with credit cards and loyalty cards is effective to both sales drive and profit increase, the alliance card program could be recommended as strategically buyable program.

    • PDF

    A Study on Hoslital Nurses' Preferred Duty Shift and Duty Hours (병원 간호사의 선호근무시간대에 관한 연구)

    • Lee, Gyeong-Sik;Jeong, Geum-Hui
      • The Korean Nurse
      • /
      • v.36 no.1
      • /
      • pp.77-96
      • /
      • 1997
    • The duty shifts of hospital nurses not only affect nurses' physical and mental health but also present various personnel management problems which often result in high turnover rates. In this context a study was carried out from October to November 1995 for a period of two months to find out the status of hospital nurses' duty shift patterns, and preferred duty hours and fixed duty shifts. The study population was 867 RNs working in five general hospitals located in Seoul and its vicinity. The questionnaire developed by the writer was used for data collection. The response rate was 85.9 percent or 745 returns. The SAS program was used for data analysis with the computation of frequencies, percentages and Chi square test. The findings of the study are as follows: 1. General characteristics of the study population: 56 percent of respondents was (25 years group and 76.5 percent were "single": the predominant proportion of respondents was junior nursing college graduates(92.2%) and have less than 5 years nursing experience in hospitals(65.5%). For their future working plan in nursing profession, nearly 50% responded as uncertain The reasons given for their career plan was predominantly 'personal growth and development' rather than financial reasons. 2. The interval for rotations of duty stations was found to be mostly irregular(56.4%) while others reported as weekly(16.1%), monthly(12.9%), and fixed terms(4.6%). 3. The main problems related to duty shifts particularly the evening and night duty nurses reported were "not enough time for the family, " "afraid of security problems after the work when returning home late at night." and "lack of leisure time". "problems in physical and physiological adjustment." "problems in family life." "lack of time for interactions with fellow nurses" etc. 4. The forty percent of respondents reported to have '1-2 times' of duty shift rotations while all others reported that '0 time'. '2-3 times'. 'more than 3 times' etc. which suggest the irregularity in duty shift rotations. 5. The majority(62.8%) of study population found to favor the rotating system of duty stations. The reasons for favoring the rotation system were: the opportunity for "learning new things and personal development." "better human relations are possible. "better understanding in various duty stations." "changes in monotonous routine job" etc. The proportion of those disfavor the rotating 'system was 34.7 percent. giving the reasons of"it impedes development of specialization." "poor job performances." "stress factors" etc. Furthermore. respondents made the following comments in relation to the rotation of duty stations: the nurses should be given the opportunity to participate in the. decision making process: personal interest and aptitudes should be considered: regular intervals for the rotations or it should be planned in advance. etc. 6. For the future career plan. the older. married group with longer nursing experiences appeared to think the nursing as their lifetime career more likely than the younger. single group with shorter nursing experiences ($x^2=61.19.{\;}p=.000;{\;}x^2=41.55.{\;}p=.000$). The reason given for their future career plan regardless of length of future service, was predominantly "personal growth and development" rather than financial reasons. For further analysis, the group those with the shorter career plan appeared to claim "financial reasons" for their future career more readily than the group who consider the nursing job as their lifetime career$(x^2$= 11.73, p=.003) did. This finding suggests the need for careful .considerations in personnel management of nursing administration particularly when dealing with the nurses' career development. The majority of respondents preferred the fixed day shift. However, further analysis of those preferred evening shift by age and civil status, "< 25 years group"(15.1%) and "single group"(13.2) were more likely to favor the fixed evening shift than > 25 years(6.4%) and married(4.8%)groups. This differences were statistically significant ($x^2=14.54, {\;}p=.000;{\;}x^2=8.75, {\;}p=.003$). 7. A great majority of respondents(86.9% or n=647) found to prefer the day shifts. When the four different types of duty shifts(Types A. B. C, D) were presented, 55.0 percent of total respondents preferred the A type or the existing one followed by D type(22.7%). B type(12.4%) and C type(8.2%). 8. When the condition of monetary incentives for the evening(20% of salary) and night shifts(40% of. salary) of the existing duty type was presented. again the day shift appeared to be the most preferred one although the rate was slightly lower(66.4% against 86.9%). In the case of evening shift, with the same incentive, the preference rates for evening and night shifts increased from 11.0 to 22.4 percent and from 0.5 to 3.0 percent respectively. When the age variable was controlled. < 25 yrs group showed higher rates(31.6%. 4.8%) than those of > 25 yrs group(15.5%. 1.3%) respectively preferring the evening and night shifts(p=.000). The civil status also seemed to operate on the preferences of the duty shifts as the single group showed lower rate(69.0%) for day duty against 83. 6% of the married group. and higher rates for evening and night duties(27.2%. 15.1%) respectively against those of the married group(3.8%. 1.8%) while a higher proportion of the married group(83. 6%) preferred the day duties than the single group(69.0%). These differences were found to be statistically all significant(p=.001). 9. The findings on preferences of three different types of fixed duty hours namely, B, C. and D(with additional monetary incentives) are as follows in order of preference: B type(12hrs a day, 3days a wk): day shift(64.1%), evening shift(26.1%). night shift(6.5%) C type(12hrs a day. 4days a wk) : evening shift(49.2%). day shift(32.8%), night shift(11.5%) D type(10hrs a day. 4days a wk): showed the similar trend as B type. The findings of higher preferences on the evening and night duties when the incentives are given. as shown above, suggest the need for the introductions of different patterns of duty hours and incentive measures in order to overcome the difficulties in rostering the nursing duties. However, the interpretation of the above data, particularly the C type, needs cautions as the total number of respondents is very small(n=61). It requires further in-depth study. In conclusion. it seemed to suggest that the patterns of nurses duty hours and shifts in the most hospitals in the country have neither been tried for different duty types nor been flexible. The stereotype rostering system of three shifts and insensitiveness for personal life aspect of nurses seemed to be prevailing. This study seems to support that irregular and frequent rotations of duty shifts may be contributing factors for most nurses' maladjustment problems in physical and mental health. personal and family life which eventually may result in high turnover rates. In order to overcome the increasing problems in personnel management of hospital nurses particularly in rostering of evening and night duty shifts, which may related to eventual high turnover rates, the findings of this study strongly suggest the need for an introduction of new rostering systems including fixed duties and appropriate incentive measures for evenings and nights which the most nurses want to avoid, In considering the nursing care of inpatients is the round-the clock business. the practice of the nursing duty shift system is inevitable. In this context, based on the findings of this study. the following are recommended: 1. The further in-depth studies on duty shifts and hours need to be undertaken for the development of appropriate and effective rostering systems for hospital nurses. 2. An introduction of appropriate incentive measures for evening and night duty shifts along with organizational considerations such as the trials for preferred duty time bands, duty hours, and fixed duty shifts should be considered if good quality of care for the patients be maintained for the round the clock. This may require an initiation of systematic research and development activities in the field of hospital nursing administration as a part of permanent system in the hospital. 3. Planned and regular intervals, orientation and training, and professional and personal growth should be considered for the rotation of different duty stations or units. 4. In considering the higher degree of preferences in the duty type of "10hours a day, 4days a week" shown in this study, it would be worthwhile to undertake the R&D type studies in large hospital settings.

    • PDF

    The Comparison of Basic Science Research Capacity of OECD Countries

    • Lim, Yang-Taek;Song, Choong-Han
      • Journal of Technology Innovation
      • /
      • v.11 no.1
      • /
      • pp.147-176
      • /
      • 2003
    • This Paper Presents a new measurement technique to derive the level of BSRC (Basic Science and Research Capacity) index by use of the factor analysis which is extended with the assumption of the standard normal probability distribution of the selected explanatory variables. The new measurement method is used to forecast the gap of Korea's BSRC level compared with those of major OECD countries in terms of time lag and to make their international comparison during the time period of 1981∼1999, based on the assumption that the BSRC progress function of each country takes the form of the logistic curve. The US BSRC index is estimated to be 0.9878 in 1981, 0.9996 in 1990 and 0.99991 in 1999, taking the 1st place. The US BSRC level has been consistently the top among the 16 selected variables, followed by Japan, Germany, France and the United Kingdom, in order. Korea's BSRC is estimated to be 0.2293 in 1981, taking the lowest place among the 16 OECD countries. However, Korea's BSRC indices are estimated to have been increased to 0.3216 (in 1990) and 0.44652 (in 1999) respectively, taking 10th place. Meanwhile, Korea's BSRC level in 1999 (0.44652) is estimated to reach those of the US and Japan in 2233 and 2101, respectively. This means that Korea falls 234 years behind USA and 102 years behind Japan, respectively. Korea is also estimated to lag 34 years behind Germany, 16 years behind France and the UK, 15 years behind Sweden, 11 years behind Canada, 7 years behind Finland, and 5 years behind the Netherlands. For the period of 1981∼1999, the BSRC development speed of the US is estimated to be 0.29700. Its rank is the top among the selected OECD countries, followed by Japan (0.12800), Korea (0.04443), and Germany (0.04029). the US BSRC development speed (0.2970) is estimated to be 2.3 times higher than that of Japan (0.1280), and 6.7 times higher than that of Korea. German BSRC development speed (0.04029) is estimated to be fastest in Europe, but it is 7.4 times slower than that of the US. The estimated BSRC development speeds of Belgium, Finland, Italy, Denmark and the UK stand between 0.01 and 0.02, which are very slow. Particularly, the BSRC development speed of Spain is estimated to be minus 0.0065, staying at the almost same level of BSRC over time (1981 ∼ 1999). Since Korea shows BSRC development speed much slower than those of the US and Japan but relative]y faster than those of other countries, the gaps in BSRC level between Korea and the other countries may get considerably narrower or even Korea will surpass possibly several countries in BSRC level, as time goes by. Korea's BSRC level had taken 10th place till 1993. However, it is estimated to be 6th place in 2010 by catching up the UK, Sweden, Finland and Holland, and 4th place in 2020 by catching up France and Canada. The empirical results are consistent with OECD (2001a)'s computation that Korea had the highest R&D expenditures growth during 1991∼1999 among all OECD countries ; and the value-added of ICT industries in total business sectors value added is 12% in Korea, but only 8% in Japan. And OECD (2001b) observed that Korea, together with the US, Sweden, and Finland, are already the four most knowledge-based countries. Hence, the rank of the knowledge-based country was measured by investment in knowledge which is defined as public and private spending on higher education, expenditures on R&D and investment in software.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.