• 제목/요약/키워드: Bush Dynamic Stiffness

검색결과 13건 처리시간 0.026초

Estimation of Dynamic Stiffness of a Rubber Bush (고무부품의 동특성 예측)

  • Goo, Jun-Hwan;Ahn, Tae-Kil;Kim, Joo-Sung;Lee, Yong-Heon;Bae, Dae-Sung;Kim, Kee-Joo;Choi, Byung-Ik;Lee, Hak-Joo;Woo, Chang-Su;Kim, Kyung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제33권11호
    • /
    • pp.1244-1248
    • /
    • 2009
  • Although rubber components are extensively used in mechanic parts. There are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. One of the most important parameters for more detailed and accurate mechanical analysis during the development stages is the dynamic characteristics of the rubber components. It is well known that the dynamic properties of rubber are dependent on frequency as well as static preload. Consequently, a large number of experiments have to be conducted to identify the dynamic stiffness of a rubber bush considering the various applied conditions. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber bush using rubber material test and static stiffness of the bush. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data.

The Study of Synthetic Material Bush (Railko Bush) Application on Large Container Vessel (대형 컨테이너 선박의 합성수지계열 RAILKO BUSH 적용 연구)

  • Lim, Jae-Hun;Park, Kun-Woo;Kim, Kyung-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.46-53
    • /
    • 2008
  • Recently, the synthetic material stern tube bush has been applied by ship owner's requirement because the synthetic material has a merit. That is to say, when stern tube seal is damaged and sea water comes into stern tube, it can work without problem because of water lubricating property. However, the material also has a demerit of temperature rise problem when some factors meets on synthetic material, for example, not sufficient lubrication oil supply and not proper shaft alignment and so on. As known in the world, the RAILKO bush is rampant for synthetic material by some ship owner because of the above mentioned reason. However, the bush has several accidents on large container vessel. Unfortunately or fortunately our yard has a chance to apply the RAILKO bush owing to requirement of specific ship owner. Therefore, it is much more required to approach the accurate shaft alignment analysis. In line with this reason, we had a shaft alignment calculation considering hull deformation and hull flexibility (hull stiffness). Also, in the calculation, we had considered dynamic condition which is reflected he propeller thrust forces and moments and oil film stiffness on the shaft alignment calculation. According to he shaft alignment calculation, bearing slope was applied on the tern tube bush and was measured. The RAILKO bush should be applied the running in procedure according to maker's recommendation for performing the oil film on the bush surface. Finally, the vessels were delivered successfully without any problem with AILKO bush as shown on his paper.

  • PDF

Estimation of Dynamic Characteristics of a Rubber Component for Subframe in Automobile Vehicle (승용차 서브프레임용 고무부시의 동강성 예측)

  • Ahn, Tae-Kil;Goo, Jun-Hwan;Kim, Joo-Sung;Lee, Yong-Heon;Kim, Kee-Joo;Choi, Byung-Ik;Lee, Hak-Joo;Woo, Chang-Su;Kim, Kyung-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제20권10호
    • /
    • pp.907-914
    • /
    • 2010
  • While rubber components are extensively used in automobile vehicle, there are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber component using rubber material test and static stiffness of the bush. And it is verified by comparing with FEM predictions and experimental results. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data. Also it estimates dynamic characteristics of a rubber component using rubber material test and FEM calculation.

Thermally-induced Mechanical Behavior of the Press-fitted Cylindrical Structure (죄임새 결합된 원통구조물의 열전도에 의한 기계적 특성변화)

  • 김선민;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권7호
    • /
    • pp.139-148
    • /
    • 1998
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure, which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness, damping as well as contact heat conduction in the structure In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed properties are strongly required especially in the contact elements adjacent to the rotational or linear bearing. This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush, the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantly.

  • PDF

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

Large deformation finite element analysis for automotive rubber components (자동차용 고무부품에 대한 대변형 유한요소해석)

  • Kim, H. Y.;Choi, C.;Bang, W. J.;Kim, J. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • 제15권1호
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제7권4호
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Study on the Prediction Technique of Vehicle Performance Using Parameter Analysis (파라미터 해석을 통한 차량 성능 예측 기법 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제20권11호
    • /
    • pp.995-1000
    • /
    • 2010
  • With the development of the auto industry, the automobile manufacturers demand to shorten development period and reduce the cost. Compared with the traditional method, applying the virtual prototype is more economical. This paper presents a method for parameters sensitivity analysis and optimizing the performance of vehicle noise and vibration. The existing design processes were repeatedly analyzed with a focus on vehicle performance to decide the design parameters of dimension, thickness, mounting type of body and chassis systems in the vehicle development period. This paper describes the prediction technique of vehicle performance using L18 orthogonal array layout, quality deviation analysis and parameter sensitivity analysis for robust design. This paper analyzed the performance correlation equation through the frequency and sensitivity database according to a design factor change. The new concept is that the performance prediction is possible without repeated activities of test and analysis. This paper described the parameter analysis applications such as bush dynamic stiffness and bush void direction of rear suspension. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce man hour and test development period as well as to achieve stable NVH performance.

The Introduction of Shaft Alignment Calculation for very Large Container Vessel (초대형 콘테이너선의 축계정렬 계산 사례 소개)

  • Kang Dong Chun;Park Kun Woo;Kim Kyoung Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF