• Title/Summary/Keyword: Busbar material

Search Result 11, Processing Time 0.029 seconds

Busbar Design of High Power HVDC Converter (대용량 HVDC 컨버터의 Busbar 설계)

  • Kim, Chan-Ki;Park, Yong-Hun;Kim, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.923-927
    • /
    • 2012
  • This paper studies a busbar design of high power HVDC converter. In order to design a electrical busbar, we need to consider electrical, mechanical and environmental condition. In this papre, we focus on the electrical design in terms of temperaure and currnet. Busbar conductor can be damaged to burn due to the temperature and fault current of busbar. In this paper, Busbar design of Jindo-Jeju HVDC #2 System that will start operate in 2012 is considered.

A Numerical Study on Natural Convection in A Three-Phase GIS Busbar (3상 GIS Busbar내 자연대류에 대한 수치해석적 연구)

  • Wang, Yangyang;Hahn, Sung-Chin;Kim, Joong-Kyoung;Kang, Sang-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.107-108
    • /
    • 2008
  • The temperature rise of GIS (Gas Insulated Switchgear) busbar system is a vital factor that affects its performance. In this paper, a two-dimensional model is presented by commercial code CFX11 for the evaluation of natural convection in the busbar system. In the model, SF6 (Sulfur Hexafluoride) is used to insulate the high voltage device and improves the heat transfer rate. The power losses of a busbar calculated by the magnetic field analysis are used as the input data to predict the temperature rise by the nature convection analysis. The heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material property and model geometry for the natural convection. The temperatures of the tank and conductors from CFX simulation and the experiment were compared. The results show a good agreement. In the future, we will calculate the 3-D model and try to reduce the temperature by adjusting some dimensional parameters.

  • PDF

Analysis of Temperature Distribution in EHV GIS Three-Phase Busbar Using Analytic Technique (해석적 기법을 이용한 초고압 GIS용 삼상모선의 온도분포 해석)

  • Hahn, Sung-Chin;Kim, Joong-Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a new magneto-thermal finite element analysis for predicting the temperature rise of the EHV GIS busbar. Joule's heat due to current flowing in the main conductor and the heat due to the induced eddy current in the tank are calculated by the magnetic field analysis. And these heats are used as the input data to predict the temperature rise for the thermal analysis. However, it is not easy to apply the heat-transfer coefficients on the boundaries for the thermal analysis. In this paper, the heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material constant and model geometry for the natural convection. The temperature distribution in the busbar by coupled magneto-thermal finite element analysis shows good agreement with the experimental data.

Development of the Analysis Technology for Short Circuit Current Capability of Busbar-Type Electrical Contacts (부스바(Busbar)형 전기접점의 단락통전성능 해석기법 개발)

  • Oh Yeon-Ho;Song Ki-Dong;Kim Jin-Ki
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • This study presents an analysis technique that can consider all variables which are needed in the design of short circuit current capability of electrical contacts. Required variables in the design are material of contact, contacting area, applied force, asperity of surface, current and so on. Short circuit current capability test was carried out for the interrelation of design variables and the verification of analysis technique. Temperature rise equation of the contacts was obtained from the test results, and also, a standard that is criterion of the occurrence availability of melting or spot of contact surface from test results was established.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Module Characteristic Modeling in Terms of the Number of Divisions of Large-Area Solar Cells (대면적 태양전지의 분할 수에 따른 모듈 특성 모델링 )

  • Juhwi Kim;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.136-142
    • /
    • 2023
  • In the past, the efficiency of solar cells had been increased in order to increase the efficiency of solar modules. However, in recent years, in order to increase output in the solar industry and market, the competitiveness of solar cells based on large-area solar cells and multi-bus bar has been increasing. Multi-busbar solar module is a technology to reduce power loss by increasing the number and width of the front busbar of the solar cell and reducing the current value delivered by the busbar by half through half-cutting. In the case of the existing M2 (156.75×156.75 mm2) solar cell, even with a half-cut, power loss could be sufficiently reduced, but as the area of the solar cell is enlarged to more than M6 (166×166 mm2), the need for more divisions emerged. This affected not only solar cells but also inverters required for module array configuration. Therefore, in this study, the electrical characteristics of a large-area solar cell and after division were extracted using Griddler simulation. The output characteristics of the module were predicted by applying the solar cell parameters after division to PSPice, and a guideline for the large-area solar module design was presented according to the number of divisions of the large-area solar cell.

Temperature Rise Prediction of Busbar of EHV GIS Considering Variation of Heat-Transfer Coefficient (열전달 계수의 변화를 고려한 초고압 GIS 모선의 온도 상승 예측)

  • Kim, Hyeon-Hun;Han, Seong-Jin;Ju, Su-Won;Jeong, Jin-Gyo;Lee, Byeong-Yun;Park, Gyeong-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.313-319
    • /
    • 2000
  • In order to design the current carrying conductor for GIS, it is important to predict temperature-rise when rated current flows in the bus bar. However, it is not easy to apply the correct heat transfer coefficient on the boundary between different material for the thermal analysis. In this paper, the heat transfer coefficient which depends on parameters such like material constant, model geometry as well as ambient temperature, was calculated by analytic method. The calculated coefficient is used for the temperature rise prediction by F.E.M. The results show good agreement with experimental data.

  • PDF

Front Surface Grid Design for High Efficiency Solar Cells

  • Gangopadhyay Utpal;Kim, Kyung-Hae;Basu Prabir Kanti;Dhungel Suresh Kumar;Jung, Sung-Wook;Yia, Jun-Sin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.78-84
    • /
    • 2005
  • Standard crystalline solar cells are generally fabricated with the front grid pattern of silver paste contact. We have reported a detailed theoretical analysis of the proposed segmented cross grid line pattern in this paper. This work was carried out for the optimization of spacing and width of grid finger, main busbar and sub-busbar. The overall electrical and optical losses due to front contact were brought down to $10\%$ or even less as compared to the usual loss of $15\%$ or more in the conventional screen printed silver paste technology by choosing proper grid pattern and optimizing the grid parameters. The total normalized power loss for segmented mesh grid with plated metal contact was also observed and the total power loss could be brought down to $10.04\%$ unlike $11.57\%$ in the case of continuous grid and plated contact. This paper is able to outline the limitations of conventional screen printed contact.

Thermal and Mechanical Properties of Ceramic Coated Al Bus Bar (세라믹 코팅 Al 부스바의 열적·기계적 특성)

  • Kwag, Dong-Soon;Baek, Seung-Myeong;Kwak, Min Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1651-1656
    • /
    • 2017
  • This paper deals with the thermal and mechanical properties of ceramic coating material for bus bars. A ceramic coated samples were prepared for the mechanical properties test. There are two types of samples. One is a square shape and the other is a busbar shape. Each sample was deteriorated for 30 days to compare the thermal and mechanical properties with the non-degraded samples. Two thermal properties tests are TGA and flammability tests, and four mechanical properties tests are drop impact test, cross cut, tensile test, and bend test. The ceramic coating material was never damaged by impact and did not separate from aluminum in the cross cut test. In the tensile test, the breakage of the insulating material did not occur until aluminum fractured, and the breakage of the insulating material did not occur until the maximum load in the bending test. The decomposition temperature (melting point) of the ceramic coating material was higher than that of other epoxy insulators. This ceramic coating material is nonflammable and it has excellent fire stability.

Study of Short-Circuit Currents Around Dĕtmarovice Power Station

  • Ali, Shehab Abdulwadood
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • The calculation of short-circuit currents is important for power systems operation and restoration, and for determining the means to protect human lives and properties. In this paper, a part of a power system network, around the D$\breve{e}$tmarovice power station in Czech Republic, was simulated by the well known program EMTP-ATPDraw (Electromagnetic Transients Program-Alternative Transient Program), and short-circuit currents and voltages were calculated at different points in the electric network and presented as a time function by the PlotXY program. Calculations were done just for phase-to-ground, and for the three-phase short-circuit at the Kun$\check{c}$ice substation. The results were important for determining the characteristics of the equipment required to withstand or break the short-circuit current; for this reason, the calculations were repeated using earth-fault resistances only for the case of busbar KUN shown in Figs. 5 and 6.