• Title/Summary/Keyword: Busan New Port Development

Search Result 84, Processing Time 0.018 seconds

A design for independent operation system for ATC in automated container terminal (자동화 컨테이너 터미널의 운영시스템을 위한 ATC 독립성 유지 시스템 설계)

  • Park, Jong-Won;Shin, Jae-Young;Kim, Woong-Sub;Kim, Yong-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.57-58
    • /
    • 2010
  • This aims to independent operation system for ATC which works for a yard in a container terminal automatically. Many intelligent algorithms have been developed and studied for TOS - Terminal Operation System - in existing container terminals. So, TOS has been getting overloaded for development, maintenance, and repair. Moreover, if new equipment are introduced for container terminal, the TOS for container terminal would be renewed whole system. Despite of its necessity, studies have been introduced insufficiently. As a result, this paper represents the concept of independent which connects between TOS and equipments so that it can perform planning, indicating, monitoring, control and etc.

  • PDF

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Panamax Second-hand Vessel Valuation Model (파나막스 중고선가치 추정모델 연구)

  • Lim, Sang-Seop;Lee, Ki-Hwan;Yang, Huck-Jun;Yun, Hee-Sung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.72-78
    • /
    • 2019
  • The second-hand ship market provides immediate access to the freight market for shipping investors. When introducing second-hand vessels, the precise estimate of the price is crucial to the decision-making process because it directly affects the burden of capital cost to investors in the future. Previous studies on the second-hand market have mainly focused on the market efficiency. The number of papers on the estimation of second-hand vessel values is very limited. This study proposes an artificial neural network model that has not been attempted in previous studies. Six factors, freight, new-building price, orderbook, scrap price, age and vessel size, that affect the second-hand ship price were identified through literature review. The employed data is 366 real trading records of Panamax second-hand vessels reported to Clarkson between January 2016 and December 2018. Statistical filtering was carried out through correlation analysis and stepwise regression analysis, and three parameters, which are freight, age and size, were selected. Ten-fold cross validation was used to estimate the hyper-parameters of the artificial neural network model. The result of this study confirmed that the performance of the artificial neural network model is better than that of simple stepwise regression analysis. The application of the statistical verification process and artificial neural network model differentiates this paper from others. In addition, it is expected that a scientific model that satisfies both statistical rationality and accuracy of the results will make a contribution to real-life practices.

Development of Composite Geo-Material for Recycling Dredged Soil and Bottom Ash (준설토와 Bottom Ash 재활용을 위한 복합지반재료 개발)

  • Kim, Yun-Tae;Han, Woo-Jong;Jung, Du-Hwoe
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.77-85
    • /
    • 2007
  • This paper investigates the mechanical characteristics of composite geo-material which was developed to reuse both dredged soils and bottom ash. The composite geo-material used in this experiment consists of dredged soil taken from the construction site of Busan New Port, cement, air foam and bottom ash. Bottom ash is a by-product generated at the Samcheonpo thermal power plant. Several series of laboratory tests were performed to investigate behavior characteristics of composite gee-material, in particular the reinforcing effect by mixing bottom ash. The experimental results of composite geo-material indicated that the stress-strain relationship and the unconfined compressive strength are strongly influenced by mixing conditions. Especially it was observed that the compressive strength of composite geo-material increased with an increase in bottom ash content due to reinforcing effect by the bottom ash. Compressive strength of composite geo-material increased with the increase in curing time. The 28-day strength of composite geo-material is $1.7{\sim}1.8$ times higher than the 7-day strength. The moist unit weight strongly depended on air-foam content as well as bottom ash content added to the composite goo-material. In composite geo-material, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of bottom ash.