• Title/Summary/Keyword: Busan Metropolitan City Hall

Search Result 12, Processing Time 0.017 seconds

Policy Suggestions for Geological and Geotechnical Information Management in Earthquake Hazard Mitigation Measures by Local Governments (지자체 지진방재 대책을 위한 지질과 지반정보관리 정책 제언)

  • Lim, Hyunjee;Song, Cheol Woo;Ha, Sangmin;Kim, Min-Cheol;Son, Moon
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.176-187
    • /
    • 2022
  • Due to recent mid-scale earthquakes in the Korean Peninsula, the Korean central and local governments are preparing new measures for earthquake hazard mitigation. Geological and geotechnical information is essential for earthquake hazard assessment. Thus, related data have been collected and assimilated as DBs by various national organizations. However, several problems arise when local governments intend to use this information to establish earthquake hazard mitigation measures. In the case of the geological information, small-scale geological maps make it difficult to acquire detailed information, whereas lithofacies and faults do not often match at the boundaries of large-scale geological maps. Significant geotechnical information is lost due to lack of digitalization. Present study proposes four policy plans for geological and geological information management. First, it is necessary to link industry-academictechnology fields to use the information that has already been or to be produced more efficiently and professionally. Second, local government regulations are required to be enacted and revised to accumulate a lot of geological and geotechnical information. Third an expert system should be prepared to improve the quality of the information. Fourth, it is necessary to establish a dedicated department and expand budget support for efficient information management.

A Study on the Suitability of CLSM Mixing Ratio Considering Dry Shrinkage (건조수축을 고려한 유동성 채움재 배합비 적합성에 관한 연구)

  • Jeon, Byeong-Won;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.7-17
    • /
    • 2022
  • The ratios of water and controlled low-strength materials (CLSM) were selected as 1:0.4, 1:0.6, 1:0.8, 1:1.0, and 1:1.2 to minimize the construction and long-term decrease in uniaxial compressive strength due to dry shrinkage through the combination of water, CLSM, and expansion agent. Approximately 2% and 5% of the expansion agent were added for each blending condition. As a result, it was found that the compressive strength decreased and the expandability increased as the specific gravity of the water increased. In addition, it was confirmed that the compressive strength increased rapidly up to 15 days of age compared to the CLSM used in the field. However, the compressive strength decreased compared to the 15 days of the age as of the 28 days of the age. It showed engineering characteristics similar to CLSM generally used in the field. Therefore, the water and the CLSM were mixed at a ratio of 1:0.8, and the field test was performed by adding 5% of an expansion agent. As a result, 28 days after age, the cavity waveform was observed using the handy GPR exploration system, and it was found that cavity waveform was relaxed or disappeared.