• Title/Summary/Keyword: Burr formation

Search Result 87, Processing Time 0.03 seconds

Development of Expert System for Burr Formation Prediction in Face Milling (밀링가공시 버 형성 예측을 위한 Expert System 개발)

  • 고성림;김영진;고대철;한상우;이제열;안용진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.717-720
    • /
    • 2000
  • Burr makes troubles on manufacturing process due to of deburring cost, quality of products and automation. This paper described the results of experimental study on the influence of the cutting parameters on the formation of exit burrs in face milling. Using the results of experimental study, we classified the burr type and developed data bases to predict burr formation result. This program will be used to predict burr type and geometry at a specified location. Simulation results on deformation strain and temperature are also available. Also algorithm which calculate the exit angle is proposed.

  • PDF

Minimization of Burr Formation in Drilling with Step Drill (구멍가공시 스텝드릴을 이용한 버형성 최소화를 위한 연구)

  • Ko, Sung-Lim;Kim, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.132-140
    • /
    • 2000
  • In conventional drilling, burr geometry can be changed according to the variation of drill geometry like point angle, rake angle. Step drilling is proposed to minimize the burr formation in drilling operation. The burr formed in first cutting can be removed in second cutting by the edge in step. The burr formed in second cutting by the edge in step can be minimized according to the change of geometry like, step angle and depth. The mechanism in step drilling is analyzed. Some step drills are applied to drilling the input shaft which is used for vehicle steering. To measure the burr formed in drilling, laser and height gage are used.

  • PDF

Experimental Investigations of Sideward Burr Formation in 3-Dimensional Cutting (3차원 절삭에서 발생하는 측면버에 관한 실험적 연구)

  • Gi-Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.164-169
    • /
    • 1998
  • Burrs can be formed on the feed marks ridges as well as on the edges of the machined parts in machining operations. These burrs are undesirable in terms of the surface quality, the precise dimensioning of machined parts and the safety of operators. This paper experimentally investigates the sideward burr formation in 3-dimensional cutting. In particular, the experimental relationships between the size of sideward burr and the cutting parameters are established and suggestions are made for minimizing sideward burr formation.

  • PDF

A Study o burr formation along helix angle in end milling (엔드밀 가공시 헬리스각 변화에 따른 버어형성에 관한 연구)

  • 장성민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.485-491
    • /
    • 1999
  • A burr is formed in every corner of parts as a result of machining, which produces undesirable edge geometry and influence deeply to surface quality of workpiece. Therefore these burrs must be removed certainly. The cost of removing these burrs is directly proportional to their size. Burrs have been among the most troublesome obstruction to high productivity and automation of machining processes. The proper selection of cutting condition and tool geometry will be helpful to reduce the occurrence of burrs. In paper will observe burr formation along helix angle in end milling and certificate experimentally mechanics relation of helix angle and burr formation.

  • PDF

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting (2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석)

  • 고대철;김병민;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

Burr Control in Meso-Punching Process

  • Shin Hong Gue;Shin Yong Seung;Kim Byeong Hee;Kim Heon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.968-975
    • /
    • 2005
  • The shearing process for the sheet metal is normally used in the precision elements such as semi-conductor components. In these precision elements, the burr formation brings a bad effect on the system assembly and demands the additional de-burring process, so this imposes high cost on manufacturing. In this paper, we have developed the in-situ auto-aligning precision meso-punching system to investigate the burr formation mechanism and ultimately minimize burr. Firstly, we introduced the punch-die contact sensing method to align the punch and the die at initial state prior to the punching process. Secondly, by using the low-price semi-con­ductor laser, burr formed on the edges is measured intermittently during the punching process. We could, finally, make burr on the sheet metal uniformized and minimized by controlling of the precision X - Y table, $1\;{\mu}m$ resolution, and measuring burr height by semiconductor laser. Experimental results show the validity of our system for pursuing the burr-free punched elements.

Burr Classification Using Acoustic Emission (음향방출을 이용한 버 유형 분류)

  • Kim, Pil-Jae;Lee, Seoung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2002
  • A number of experimental studies on burr formation in face milling operations have been pursued. They usually focus on machining parameters such as depth of cut, leed rate, spindle speed and in-plane exit angle. But it if difficult to set the correlation between burrs and the parameters on burr when such parameters are considered at the same time. Therefore, in this paper, acoustic emission (AE) is considered as an alternate way to predict burr types regardless of machining conditions. AE signals during face milling were sampled and processed, then fed into an artificial neural network to classify burr types \\\"on-line\\\".\\\".uot;.

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Development of optimal process planning algorithm considered Exit Burr minimization on Face Milling (Face Milling에서 Exit Burr의 최소화를 고려한 최적 가공 계획 알고리즘의 개발)

  • 김지환;김영진;고성림;김용현;박대흠
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1816-1819
    • /
    • 2003
  • As a result of milling operation, we expect to have burr at the outward edge of workpiece. Also, it causes undesirable problems such as deburring cost, low quality of machined surface, and bottleneck in manufacturing process. Though it is impossible to totally remove burr in machining, it is necessary to plan a machining process that minimizes the occurrence of burr. In this paper, a scheme is proposed which identifies the tool path of the milling operation with minimum burr. In the previous research, a Burr Expert System was developed where the feature identification, the cutting condition identification, and the analysis on exit burr formation are the key steps in the program. The Burr Expert System predicts which portion of workpiece would have the exit burr in advance so that we can calculate the burr length of each milling operation. Here, the critical angle determines whether the burr analyzed is an exit burr or not. So the burr minimization scheme becomes to minimize the burr with critical angle. By iterating all the possible tool paths in certain milling operation, we can identify the tool path with minimum burr.

  • PDF