• Title/Summary/Keyword: Burr and delamination

Search Result 6, Processing Time 0.018 seconds

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

The Exit Hole Burr Generation of CFRP with Ultrasonic Vibration (초음파 진동에 따른 CFRP의 출구 구멍 버 생성)

  • Won, Sung-Jae;Li, Ching-Ping;Park, Ki-Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • CFRP has many industrial applications due to its low weight and high strength properties. CFRP is a composite material composed of carbon fibers embedded in a polymer matrix; it provides excellent resistance to fatigue wear, corrosion, and breakage due to fatigue. It is increasingly demanded in aircraft, automotive, and medical industries due to its superior properties to aluminum alloys, which were once considered the most suitable for specific applications. The basic machining methods of CFRP are drilling and route milling. However, in the case of drilling, the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are barriers to successful application. This paper investigates the occurrence of exit burrs when drilling holes with ultrasonic vibration. Depending on design parameters such as the point angle, the characteristics of hole drilling were identified and appropriate machining conditions were considered.

Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass Carbon-Fiber Hybrid Composite (원형 톱날의 형태와 마모가 유리 탄소섬유 하이브리드 복합재료의 절단 품질에 미치는 영향)

  • Baek, Jong-Hyun;Joo, Chang-Min;Kim, Su-Jin;Park, Yoon-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.72-79
    • /
    • 2021
  • A circular saw is an effective tool for cutting glass and carbon-fiber hybrid composites. This study investigated tool wear and cut quality when reusing saw blades. The carbide saws wear four times faster than the new ones, and polycrystalline diamond (PCD) is very resistant to tool wear, except at the end of its lifespan. The cut cross-section quality is affected by the blade type, tool wear, and spindle speed. Alternate top bevel (ATB)-type blades are suitable for cutting fiber-reinforced plastics, but triple-chip grind (TCG)-type blades are unsuitable because they cause fiber-pullout defects. Tool wear and low spindle speeds increase the occurrence of arc scratches, due to the rear saw blade. A microscopic examination showed that the burr, which is a mixture of fiber chips and epoxy matrix, was bonded on top, and glass-fiber delamination occurred on the bottom glass-fiber-reinforced polymer (GFRP) surface.

A Study on the Removal of CFRP Machining Defects by Various Tool Geometries (공구 형상에 따른 CFRP의 가공결함 제거에 관한 연구)

  • Park, Ki Moon;Ko, Tae Jo;Yu, Zhen;Kumaran S, Thirumalai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.16-23
    • /
    • 2017
  • CFRP(Carbon Fiber Reinforced Plastics) has many industrial applications due to its low weight and high strength properties. Due to its superior properties, for example, excellent resistance to fatigue wear, corrosion, and breakage from fatigue, it has been widely applicable to aircraft, automotive, and medical industries and so on. The main machining for CFRP is drilling, and route milling. In case of drilling, the machining defects such as the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are inevitable. The issue to remove such kind of defects is necessary to make CFRP parts successful. From this point of view, this paper investigates the removal effectiveness of machining defects existing at exit region with different type of tool geometries. Consequently, based on the experiments, the tool geometry is most impact factor to remove uncut fiber or resin.

Study on the Mechanical Properties of Hybridized Carbon Fiber Composite According to Stacking Structure (하이브리드 탄소섬유 적층구조에 따른 복합재료의 기계적 특성 연구)

  • Koo, Seon Woong;Oh, Woo Jin;Won, Jong Sung;Lee, Ha Ram;Youn, Ju Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • As carbon fiber reinforced composites(CFRP) are widely used in aerospace, automobile, marine, and sports goods applications, they have been studied extensively by various researchers. However, CFRP have been pointed out because of machining problems such as delamination and burr phenomenons. Especially, hole machining process, drilling, has non-smooth features on inlet and outlet surfaces of drilled hole. This kind of machining problem can be controlled to some extent by using high modulus pitch-CF, which has considerable effects on fracture behavior of composite compared with only PAN CF composite. Therefore, PAN and pitch hybridized CF composites were prepared having high strength and modulus. The results demonstrate that the hybrid CFRP specimens with pitch CF offer the good potential to enhance modulus as well as strength properties. Dynamic mechanical, flexural, and impact properties were measured and analyzed. Morphological surface of the composites were also observed by IFS-28, canon after hole machining.

FPCB Cutting Process using ns and ps Laser (나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Sohn, Hyon-Kee;Paik, Byoung-Man
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2008
  • Ultraviolet laser micromachining has increasingly been applied to the electronics industry where precision machining of high-density, multi-layer, and multi material components is in a strong demand. Due to the ever-decreasing size of electronic products such as cellular phones, MP3 players, digital cameras, etc., flexible printed circuit board (FPCB), multi-layered with polymers and metals, tends to be thicker. In present, multi-layered FPCBs are being mechanically cut with a punching die. The mechanical cutting of FPCBs causes such defects as burr on layer edges, cracks in terminals, delamination and chipping of layers. In this study, the laser cutting mechanism of FPCB was examined to solve problems related to surface debris and short-circuiting that can be caused by the photo-thermal effect. The laser cutting of PI and FCCL, which are base materials of FPCB, was carried out using a pico-second laser(355nm, 532nm) and nano-second UV laser with adjusting variables such as the average/peak power, scanning speed, cycles, gas and materials. Points which special attention should be paid are that a fast scanning speed, low repetition rate and high peak power are required for precision machining.

  • PDF