• Title/Summary/Keyword: Burnt Gas Temperature

Search Result 36, Processing Time 0.024 seconds

A Study on Soot Formation in Premixed Constant-Volume Combustion at High Pressures (高壓下의 定積 豫混合氣燃燒에 있어서 煤煙생成에 關한 硏究)

  • 임재근;배명환;김종일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.589-597
    • /
    • 1992
  • The effect of pressure on soot formation in premixed propane-air combustion is investigated at high pressures over the pressure range of 1 to 5 MPa by using a specially designed constant volume combustion bomb. The combustiom chamber of disk type with eight spark plugs located on the circumference at an interval of 45deg is 100mm in diameter by 14mm thick. The end gases are compressed to high pressures by the eight converging flames. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique, and the burnt gas temperature during the same period is measured by the two-color method. It is found that the soot yield rises with 50 to 100% for the respective equivalence ratio range of 1.9-2.2 at an interval of 0.1 when the combustion pressure is increased from 1 to 5 MPa, and that the turbulent flames decrease in the soot yield as compared with the laminar flames because the burnt gas temperatures increase with the drop of heat loss.

Numerical Simulation of Flame Propagation in a Micro Combustor (초소형 연소기내 화염전파의 수치모사)

  • Choi, Kwon-Hyoung;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Development and Acceptance Test Results of 75-tonf Class Liquid Rocket Engine Gas Generator (75톤급 가스발생기 개발시험 및 수락시험 결과)

  • Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Hyeon-Jun;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.55-65
    • /
    • 2020
  • In this paper, development and acceptance test results of 75-tonf class liquid rocket engine gas generators are described. Up to now, more than 330 times and cumulative time of 7,000 seconds gas generator autonomous tests have been carried out with 44 gas generator models. Through the tests it was verified that 75 tonf gas generator shows very reliable and reproducible characteristics in terms of chamber pressure, combustion efficiency, pressure loss, combustion stability, burnt gas temperature, and etc. 5 gas generators which are the last series of 75 tonf gas generator for the Korea Space Launch Vehicle II, will be manufactured until end of 2019 and their acceptance tests will be executed at the first half of 2020.

Formation of Volatile Compounds from Maillard Reaction of D-Glucose with DL-Alanine in Propylene Glycol Solution (Propylene Glycol 용매계에서 DL-Alanine과 D-Glucose의 마이야르 반응에 의한 휘발성 화합물의 생성)

  • Kim, Young-Hoi;Kim, Ok-Chan;Lee, Jung-Il;Yang, Kwang-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.157-163
    • /
    • 1988
  • The volatile compounds produced from the browning reaction of 0.5M DL-alanine and 0.5M D-glucose mixture using propylene glycol as a reaction medium were analysed by gas chromatography and gas chromatography-mass spectrometry and effects of temperature($100^{\circ}C,\;120^{\circ}C,\;140^{\circ}C$) and time(20min, 2hours) on the formation of volatile compounds were investigated. Browning reaction were rapidly increased as the reaction temperature and time increased. From methylene chloride extracts, twenty six compounds, including 7 alkyl pyrazines. 4 pyrroles, 3 furans, 1 furanone and 11 miscellaneous compounds were identified. The relative amounts of pyrazines, pyrroles and furans were markedly increased as reaction temperature and time increased. The results showed that caramel-like and burnt sugar-like aroma produced by alanine -glucose reaction must be mainly comprised of nitrogeneous heterocyclic such as pyrazines, pyrroles and oxygen heterocyclic compounds such as 2-hydroxy-3-methyl-2-cyclopenten-1-one and 2,5-dimethyl-4-hydroxy-3(2H)-furanone.

  • PDF

Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow (스월이 있는 3차원 모델 연소기 내의 연소특성)

  • Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

A Study on NOx Emission and the Characteristics of Partially Premixed Flame (부분 예혼합 화염의 NOx 배출과 화염특성에 관한 실험적 연구)

  • Choi, Ju-Seok;Chun, Chul-Kyun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.156-162
    • /
    • 2001
  • The effects of co-flow and the variation of the equivalence ratio on NOx emission were investigated experimentally for unconfined and confined partially premixed flames. The shape, length, temperature of flames and the concentration of burnt gas were measured. Two types of co-flow (parallel and swirling co-flow) were considered. For unconfined flames, flame with parallel co-flow is the longest and the next is flame without co-flow. Flame with swirl is the shortest. The length of swirling flame increases suddenly under certain value of equivalence ratio. EINOx is diminished by the decrease of equivalence ratio. It is found that the unconfining of flame enhances the emission of NOx. The EINOx of unconfined flame with parallel co-flow is less than that of flame without co-flow.

  • PDF

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation (압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발)

  • Choi, Kwon-Hyoung;Kwon, Se-Jin;Lee, Dad-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.