• Title/Summary/Keyword: Burning temperature

Search Result 420, Processing Time 0.022 seconds

Synthesis of $CA_2$-based Clinker by Hydration-Burning Method (I) : Effects of Temperature on Synthesis (수화-소성법에 의한 $CA_2$클린커의 합성(I) : 합성에 미치는 온도의 영향)

  • 송태웅;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 1990
  • CA2-based clinker with highly activated surface and hydraulic properties was synthesized at a comparatively lowr temperature than that of conventional synthesis by "hydration-burning method". This consists of calcining the mixture of CaCO3 and Al2O3 to obtain a primary clinker, hydrating the primary clinker and reburning the hydrates to obtain final clinker. Burning of primary clinker above 1200℃ was necessary to eliminate free CaO in it and to obtain it's solid hydrate. However, rising the burning temperature above 1300℃ is ineffective due to the decrease in hydraulic properties of the primary clinker with the temperature. Hydration of primary clinker at the elevated temperature(>35℃) was required to obtain the hydrate with more porous structure and final clinker with more active surface. CA2 was formed and increased with temperature at above 1150℃, finally became a primary phase of the final clinker. However, burning at the temperature above 1300℃ resulted in reverse effect on the hydraulic properties of the final clinker due to rapid decrease in it's surface area with the temperature.

  • PDF

Change of Surface Temperature in Woodceramics Made from MDF(II) - Effect of Impregnation Rate and Burning Temperature - (MDF로 제조된 우드세라믹의 표면온도 변화(II) - 수지 함침율과 소성온도의 영향 -)

  • Oh, Seung Won;Byeon, Hee Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • In this study, woodceramics were made from MDF with various resin impregnation rate. To investigate the change of surface temperature of woodceramics, the impregnated MDF was burned at the temp. 600, 800, 1,000, 1,200℃. Surface temperature of woodceramics was increased as impregnation rate and burning temperature was increased. The specimen burned at 800℃ was lower than others. Change of temperature under given temperature increased as time passed and it showed more increased in temperature at burning temperature of 1,200℃. Change of surface temperature increased when floor temperature increased and the temperature was 49.2℃ at 70℃ in floor temperature of 1,200℃ specimen. The decent in surface temperature of woodceramics was the fastest decrease at the burning temperature of 800℃ specimen.

An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments (폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구)

  • 정종수;박은성;박종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.

Change in Surface Temperature of Woodceramics Manufactured by Sawdust Boards - Effect of the Rate of Resin Impregnation and Burning Temperature - (톱밥보드로 제조된 우드세라믹의 표면온도 변화 - 수지 함침율과 소성온도의 영향 -)

  • 오승원;박금희;변희섭
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • Using woodceramics made from sawdust board of Larix leptolepis thinning logs, change in surface temperature were investigated, by the rate of resin impregnation and burning temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. Woodceramics made from under the condition of the rate of resin impregnation 70-80% and burning temperature 800-$1000^{\circ}C$, were higher than that of surface temperature. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

  • PDF

Characteristics of Laminar Lifted Flame In High Temperature Coflow Burner (고온 동축류버너에서 층류부상화염 특성)

  • Kim, K.N.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.104-110
    • /
    • 2001
  • Characteristics of lifted flame for highly diluted propane with nitrogen in high temperature coflowing air have been experimentally investigated, and the stabilization mechanism of lifted flame in high temperature air coflow have been proposed. As the coflow temperature increases, the liftoff height of flame decreased due to the increase of stoichiometry laminar burning velocity. At same coflow temperature, the difference of liftoff height between the fuel mole fractions has been disappeared by scaling the liftoff velocity with stoichiometry laminar burning velocity. It has been found that lifted flame can be stabilized for even smaller fuel velocity than stoichiometry laminar burning velocity. This can be attributed to buoyancy effect and the liftoff velocity characteristics for coflow temperature support it.

  • PDF

Prediction of Laminar Burning Velocity and Flame Thickness in Methane-Air Pre-Mixture (메탄-공기 예혼합기에서의 층류 화염속도 및 화염두께 예측)

  • Kwon, Soon-Ik;Bowen, Philip J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1201-1208
    • /
    • 2003
  • The thickness of flame and preheat zone from burning velocity which was computed by using Premix code of Chemkin program for methane-air mixture. Also the thickness was evaluated from temperature profile which is also obtained from Premix code for the equivalence ratio of 0.5 to 1.6. The computations were carried out for the laminar flame thickness and burning velocity under the unburned gas temperature 0.5bat-30bar and temperature of 300K-700K at ${\Phi}=l.0$. Comparison of the results showed no difference between these two methods. The flame thickness was decreased by increasing the pressure and temperature, but, the affect of pressure is more significant than the effect of temperature on the flame thickness. The thickness of preheat zone was about 66.5% of the flame thickness, and flame thickness and burning velocity were also predicted by using empirical equation.

Burning Rate of Methyl and Ethyl Alcohols (메칠, 에칠 알콜의 연소속도)

  • 우인성
    • Fire Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 1996
  • Burning rate of immobilized methyl and ethyl alcohols on ceramic balls was studied. Experiments were performed by burning methyl, ethyl alcohols immobilized on sands (particle size 0.35mm) and ceramic balls (particle size 1-5mm) to measure mass burning rate, height burning rate and combustion temperature. The longer time from ignition to extinguishment was resulted from the larger particle size of ceramic balls and the smaller size of ceramic balls exhibited the higher mass burning rate. Of alcohols tested the relative magnitude of facilitation of combustion was methyl > ethyl. Combustion temperature of alcohols, without regard to the types of alcohols, was not increased with smaller ceramic balls(up to 3mm of particle size). However, with larger ceramic balls, combustion temperatare of alcohols was increased by 40-50$^{\circ}$ and the highest combustion temperatare was obtained with sands (particle size 0.35mm).

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity (물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.

A Case Study on Fire Investigation for a Wood-Burning Stove in an Idyllic House (전원주택의 벽난로와 관련된 화재사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.119-128
    • /
    • 2015
  • A fire broke out in a working wood-burning stove and destroyed an idyllic house about two years after it was built. This study analyzed data provided through the court by the fire station, police station, fire insurance investigation agency, house construction company, and wood-burning stove maker Based on the fire pattern of low-temperature long-term ignition that remained in the studs, the fire was found to be caused by the conduction of heat in the fire box to the studs of the wall next to the wood-burning stove. A fire simulation showed that the low-temperature long-term ignition of the studs next to the wood-burning stove occurred because a hole was not made for ventilation in the chimney.