• Title/Summary/Keyword: Burning droplets

Search Result 22, Processing Time 0.026 seconds

The Effects of Droplet Arrangement on the Vaporization and Combustion Characteristics of Liquid Fuel Droplets (액체 연료 액적들의 배열이 증발 및 연소특성에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.17-26
    • /
    • 2003
  • The objective of present study is to understand the interaction of burning droplets in air stream for various droplet arrangement. The unsteady combustion of linearly arranged droplets with a convective flow has been studied numerically. The droplets with spacing of $5R_0\;to\;40R_0$ horizontally and with spacing of $4R_0\;to\;16R_0$ vertically are studied. The effects of Reynolds number, horizontal spacing, and vertical spacing on the interaction of burning droplets are examined. The results indicate that the droplet burning behavior is influenced by Reynolds number and relative location of droplets in the array. The interaction of droplets is increased for arrays with smaller droplet spacing. The vaporization of droplets in the array is varied with both horizontal and vertical spacing exponentially.

  • PDF

Interaction of burning droplets with internal circulation (내부순환유동을 고려한 연소하는 액적들의 상호작용)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

An Experimental Study About Interaction of Droplet Array Combustion (액적배열연소의 상호간섭에 관한 실험적 연구)

  • Kim, Heung-Sik;Baek, Seung-Wook;Park, Jun-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1355-1363
    • /
    • 2002
  • An experimental study was conducted to investigate the interaction phenomena of droplet array combustion in ambient environment. The droplet with 1 mm in diameter was supported from an optical fiber and ignited with a hot wire. Combustion lifetimes and burning rate constants were measured for fuel of nheptane according to parameters, which were junction and suspender spacings, and array configuration. Results show that the burning process considerably depends on the initial away configuration. The d$^2$-law is found to be correct when applied to both of the droplets in away and the single droplet. For separation distance of about 5mm, there exists a critical state. So the transition from a merged flame to separated flames occurs and burning velocity is much faster than before. Combustion lifetime of the lower droplet is shorter than that of the upper droplet in the two-dimensional arrays combustion. Burning rate constants of the droplets in arrays are smaller than that of the single droplet, while they become higher as separation distance increases. Combustion lifetimes of the droplets in arrays are longer than that of the single droplet and decrease as separation distance increase. It is concluded that the array configuration and the mergedness of the flame are the most important factors governing multi-droplet combustion.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

The Effects of Droplets Arrangement and Size Difference on the Vaporization and Combustion Characteristics of Liquid Fuel Droplets (액체 연료 액적들의 배열 및 크기차이가 증발 및 연소특성에 미치는 영향)

  • Lee, Dong-Jo;Kim, Ho-Young;Cho, Chong-Pyo;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.107-113
    • /
    • 2007
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various particle arrangement and size difference. In this simulation some conditions are fixed, surround gas temperature is 1250K, pressure is 10 atm and drolet's initial temperature is 300K. The transient combustion of arranged droplets, the fixed droplet distances of 4 radii to 20 radii horizontally, is studied. And the range of size of droplet is 75${\mu}m$ to 100${\mu}m$. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal spacing substantially influence lifetime of interacting droplets. At a Reynolds number 10, lifetime of the three droplets with decreasing horizontal droplet spacing increases monotonically. But when droplet spacing decreases further to 4radii, Lifetime of interacting droplets are increase. So Lifetime of interacting droplets exhibits a strong dependence on the horizontal droplet spacing and size difference. It can be investigated well with these conditions to that of single burning droplet.

  • PDF

Effect of droplet length on a burning constant rate of suspended droplet (액적간격이 고정액적의 연소율상수에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presents the results of an experimental investigation on the combustion of single droplets and 1-D droplet arrays of jet A-1 fuel droplets in atmospheric pressure. Experimental results indicate that burning rate constants$({\kappa}_c)$ of jet A-1 fuel droplets were independent of initial droplet size as $0.915{mm}^2$/sec. It was acquired a general relationship expressing the variation of $d^2$ with time for droplet burning For 1-D droplet arrays $(l/d_o$=1.208{\sim}2.922)$/TEX>, the burning rate constant ${\kappa}_c$ decreased with decreasing droplet spacing $l/d_o$ and, The effect on combustion rate constant ${\kappa}_c$ was stronger to second fuel droplet than third fuel droplet with uniform droplet distance

Numerical Study on the Interaction of Liquid Fuel Droplets in the Reacting Flow Field (연소 유동장 내 액체 연료 액적간의 상호작용에 대한 수치적 연구)

  • Cho, Chong-Pyo;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.63-71
    • /
    • 2001
  • The objective of this work is to elucidate the details of two key factors dominating the droplet buring behavior in sprays : droplet-droplet interaction and convective flow. The combustion of a one-dimensional linear droplet array with a convective flow has been studied. A one-step, second order model was employed to simulate the chemical reaction in the combustion process. Results for droplet arrays burning at two Reynolds numbers, 50 and 100, two horizontal droplet spacings, 5 and 11 radii, and two vertical droplet spacing, 2 and 4 radii, were obtained. The results indicate the droplet burning behavior is affected by Reynolds number, droplet-droplet spacing, and the relative location of droplets in the array. Droplet-droplet interaction was found to be strong for arrays with smaller droplet spacing.

  • PDF

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Combustion Characteristics of Spherical Droplet in Turbulent Flow Field (난류 유동장 내 구형 액적의 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

Effect of acoustic wave on the evaporation/combustion of suspended droplet (음파가 고정액적의 증발/연소에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents the results of the experimental investigation on the effect of acoustic wave on the combustion of suspended A-1 jet fuel droplets in atmospheric pressure. Experimental results indicate that A-1 jet fuel droplet burning rate constants $k_c$ were independent of initial droplet size and the relative evaporation/burning-rate constant $k_{e'}k_c$(ratio of the acoustically disturbed evaporation/burning-rate constant to the undisturbed evaporation/burning-rate constant) increased remarkably 1.2~1.51times, 1.04~1.42times, for frequency below 100Hz, and sound pressure level above 80dB.