• Title/Summary/Keyword: Burkholderia glumae

Search Result 38, Processing Time 0.037 seconds

Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

  • Kang, In Jeong;Kang, Mi-Hyung;Noh, Tae-Hwan;Shim, Hyeong Kwon;Shin, Dong Bum;Heu, Suggi
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the $63^{\circ}C$ as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

Current Status of Bacterial Grain Rot of Rice in Korea (세균성 벼알마름병의 연구동향)

  • 송완엽;김형무
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • The grain rot of caused by Bukholderia glumae was fist reported in japan in 1955 and then reported in other countries as well as in Korea in 1986. The pathogen causes both seedling and grain rot of rice but it cannot attack any other parts of adult rice plant. Bacterial colonies grow slowly, and are circular and greyish white. The causal bacterium is Gram-negative and rod shape with 1-3 polar flagella, and produce a diffusible yellow-greenish nonfluorescent pigment on King's medium B. Biochemical characteristics such as negative in arginine dehydrolase, oxidase reaction and nitrate reduction and positive in lecithinase, and the utilization of L-arginine and inositol are useful in differentiation of this from other nonfluorescent bacteria pathogenic to rice. This pathogenic bacterium had belonged to the genus of Pseudomonas but recently was transferred to the new genus Burkholderia on the basis of physiological characteristics and DNA-DNA hybridization data. However, other characteristics such as colony heterogenicity or colonial variation after subcultures, phytotoxin, secreting antibiotics, and relationship between yellow greenish pigment production and pathogenicity need to be clarified more. To develop an effective control strategy for this disease, understanding of detailed life cycle of the disease and critical environmental factors affecting disease development is prerequisite. Although 5,435 ha of rice paddy in Korea was infested during 1998, there is no exact estimation of yield losses and distribution of the pathogen. The review will focus on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

Development of a Selective Medium for Surveillance of Fusarium Head Blight Disease

  • Hosung Jeon;Jung Wook Yang;Donghwan Shin;Donggyu Min;Byung Joo Kim;Kyunghun Min;Hokyoung Son
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

Functional pathogenomics of Burkhozderia glumae (oral)

  • Kim, Jinwoo;Kim, Suhyun;Yongsung Kang;Jang, Ji-Youn;Kim, Jung-Gun;Lim, Jae-Yoon;Kim, Minkyun;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.66.1-66
    • /
    • 2003
  • The aim of this study was to characterize the interactions of rice and Burkholderia glumae, a causal agent of bacterial grain rot of rice, at molecular levels using whole genomic sequences and to identify genes important for pathogenicity and symptom development. To do these, we sequenced whole genome of the bacterium and constructed cosmid clone profiles. We generated pools of mutants using various transposons and determined mutation sites by sequencing rescued plasmids. We focused on studying toxoflavin biosynthetic genes, quorum sensing regulation, and Hrp type III protein secretion systems. We found that two possible operons consisting of five genes are involved in toxoflavin biosynthesis and their expression is regulated by quorum sensing and LysR-type regulator, ToxR. We have isolated the nn PAI of B. glumae and characterized by mutational analyses. The hrp cluster resembled most the putative Type III secretion systems of B. pseudomallei, which is the causative agent of melioidosis, a serious disease of man and animals. The Hrp PAI core region showed high similarity to that of Ralstonia solanacearum and Xanthomonas campestris, however some aspects were dissimilar.

  • PDF