• 제목/요약/키워드: Buried livestock carcasses

검색결과 7건 처리시간 0.018초

A Study on the Development of the Design of Industrial Animal Biodegradation Handler for Environmentally Friendly Use

  • Kim, Gokmi
    • International journal of advanced smart convergence
    • /
    • 제10권2호
    • /
    • pp.151-157
    • /
    • 2021
  • Livestock farmers are using animal carcasses to dispose of the carcasses of livestock that have died of natural causes or disease. Most of the existing livestock carcass processors are mechanical in their structure without considering the environment. It has a function of sterilizing dead bodies at high pressure after processing them and causes environmental problems such as carbon monoxide emissions. If livestock carcasses occur, livestock farmers have to purchase their own livestock carcasses or entrust them to the outside world, which is costly. For this reason, the possibility of environmental pollution, infectious diseases, and spread has been increased recently by frequent dumping of dead bodies. The carcass of livestock mixed with manure not only serves as a medium for infectious diseases but also needsto be buried on a large scale as foot-and-mouth disease and avian influenza spread. As a result, the possibility of environmental pollution, such as contamination of groundwater, is increasing, so research is needed to protect and improve the environment. We aim to improve the process of processing livestock carcasses and purify the agricultural environment through development results on the form, structure and function of eco-friendly livestock carcasses. Its shape is applied with naturalshapessuch asstones and seeds. The material used in the dead body processis a brown beggar biocouple and is applied with an eco-friendly industrial animal recycling process. As a result of the study, it is expected to improve odors and the environment, and to be used as data to improve and help the livestock industry in the future.

돼지 사체의 혐기적 고온 매몰퇴비화법에서의 악취발생 특성 (Odor emission characteristics in anaerobic high temperature burial composting of swine carcasses)

  • 양우영;이진영;최연주;류희욱;채정석;전준민
    • 실내환경 및 냄새 학회지
    • /
    • 제16권2호
    • /
    • pp.187-198
    • /
    • 2017
  • It is very important to treat infected livestock carcasses safely and quickly. In this study, the degradation characteristics and odor generation characteristics of carcasses were investigated during the treatment of swine carcasses using the anaerobic burial composting method. While the carcasses were decomposed, the temperature remained high, at $40{\sim}55^{\circ}C$ on average, and most of the carcasses were decomposed rapidly. The major odor-contributing substances in the buried composting method are sulfuric odor substances such as $H_2S$, $CH_3SH$, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), and the odor contribution of these substances is 93~99%. Among them, $CH_3SH$, which accounts for about 56~89% of odor contribution, was the most representative indicator substance. Despite the anaerobic digestion process, the methane concentration in the digestion process was as low as 0.5~0.8% at the burial point of the carcass. The odor and methane produced during the decomposition of the carcasses decreased considerably during the discharge to the surface layer through the buried layer consisting of compost. These results suggest that anaerobic high temperature burial composting is one of the most useful methods to treat carcasses of infected livestock.

매몰된 가축 사체의 부패 촉진 및 토양 비옥화를 위한 Corynebacterium glutamicum과 Bacillus licheniformis 처리 효과 (Effect of Corynebacterium glutamicum and Bacillus licheniformis on livestock material burial treatment)

  • 신유정;허건영;김주형;김빛나;민지호;조호성
    • 한국동물위생학회지
    • /
    • 제40권1호
    • /
    • pp.53-59
    • /
    • 2017
  • Foot and mouth disease (FMD) is highly infectious disease of cloven-hoofed animals, particularly problematic in cattle, sheep, pigs and goats for economic reasons. Last FMD outbreak in February, 2017 caused tremendous social and economical impacts. The Korean FMD policy aims to vaccinate intact animals and euthanize and bury infected animals to prevent the disease spread. However, there was a problem that the buried livestock did not decompose after several years. Therefore, the study was purposed to investigate the effect of Corynebacterium glutamicum and Bacillus licheniformis on the degradation of buried cow carcasses and on the soil condition; such as temperature, decomposition course of carcasses, composition of amino acids in the soil around carcasses, and plant root elongation to measure soil conditions. As a result, the composition of amino acids in the soil treated with C. glutamicum and B. licheniformis was generally higher than those in the untreated soil. Plant roots in soil treated with C. glutamicum and B. licheniformis grew longer than in non-treated soil. The results suggested that the toxic effect on a grave land buried with FMD infected livestock is reduced when treated with C. glutamicum and B. licheniformis in regard of odor reduction, promoted decaying process, and soil fertilization.

매몰 사축에 의한 침출수내 오염물질 제거 방법 (Method for contaminant removal from leachate induced by buried livestock carcasses)

  • 전해성;박준규;김건하
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.395-408
    • /
    • 2023
  • This study presents a novel method for addressing the issue of high-concentration contaminants (ammonium, phosphate, antibiotics) in leachate arising from decomposing livestock carcasses. Antibiotics, developed to eliminate microorganisms, often have low biodegradability and can persist in the ecosystem. This research proposes design elements to prevent contamination spread from carcass burial sites. The adsorbents used were low-grade charcoal (an industrial by-product), Alum-based Adsorbent (ABA), and Zeolite, a natural substance. These effectively removed the main leachate contaminants: low-grade charcoal for antibiotics (initial concentration 1.05 mg/L, removal rate 73.4%), ABA for phosphate (initial concentration 2.53 mg/L, removal rate 99.9%), and zeolite for ammonium (initial concentration 38.92 mg/L, removal rate 100.0%). The optimal mix ratio for purifying leachate is 1:1:10 of low-grade charcoal, ABA, and zeolite. The average adsorbent usage per burial site was 1,800 kg, costing KRW 2,000,000 per ton. The cost for the minimum leachate volume (about 12.4 m3) per site is KRW 2,880,000, and for the maximum volume (about 19.7 m3) is KRW 4,620,000. These findings contribute to resolving issues related to livestock carcass burial sites and suggest post-management strategies by advocating for the effective use of adsorbents in leachate purification.

Costs analysis of carcass burial site construction: Focused on the foot and mouth disease 2011, South Korea

  • Kim, Mi Hyung;Ko, Chang-Ryong;Kim, Geonha
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.356-362
    • /
    • 2015
  • Many burial sites were constructed in a short time to prevent the rapid spread of foot and mouth disease in infected livestock carcasses in Korea. More than 4,700 carcass burial sites were constructed in 2011. Approximately seven million poultry and 3.5 million livestock, including cattle and swine, were buried on farmland. Some burial sites were suspected of leachate leakage and were excavated and carcasses redisposed in a bioaugmentation process. This study performed interviews in order to understand the economic issues related to carcass burial and redisposal. The internal data from local government and the assumption data from online sites were analyzed to evaluate the costs; the focus was on burial site construction. The results showed that the local government paid $4.7 and $10.9 per carcass for traditional burial and redisposal. The comparable costs shown online were $4.5. This study found that the standard operating procedures should be carried out to reduce environmental impact and avoid additional costs. We estimated that the cost could be reduced by the advance preparations of materials against the emergency situations such as catastrophe of epidemics. In addition, the innovative technology for the stabilization of carcasses should be established through a future study.

Effect of Corynebacterium glutamicum on Livestock Material Burial Treatment

  • Kim, Bit-Na;Cho, Ho-Seong;Cha, Yougin;Park, Joon-Kyu;Kim, Geonha;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1404-1408
    • /
    • 2016
  • In recent years, foot-and-mouth disease has occurred in all parts of the world. The animals with the disease are buried in the ground; therefore, their concentration could affect ground or groundwater. Moreover, the complete degradation of carcasses is not a certainty, and their disposal is important to prevent humans, livestock, and the environment from being affected with the disease. The treatment of Corynebacterium glutamicum is a feasible method to reduce the risk of carcass decomposition affecting humans or the environment. Therefore, this study aimed to investigate the effect of C. glutamicum on the soil environment with a carcass. The composition of amino acids in the soil treated with C. glutamicum was generally higher than those in the untreated soil. Moreover, the plant root in the soil samples treated with C. glutamicum had 84.0% amino acids relative to the standard value and was similar to that of the control. The results of this study suggest the possibility to reduce the toxicity of a grave land containing animals with this disease.

가축 사체 매몰지 침출수 처리를 위한 Fenton 산화공정의 최적조건 (Optimal Condition of Operation Parameter for Livestock Carcass Leachate using Fenton Oxidation Process)

  • 안상우;정영철;유지영;민지은;이시진;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.26-35
    • /
    • 2013
  • Outbreak of animal infectious diseases such as foot-and-mouth disease, avian influenza are becoming prevalent worldwide. For prevent the further infection, tremendous numbers of the infected or culled stocks are buried around farm. This burial method can generate a wide range of detrimental components such as leachate, nutrient, salt, and pathogenic bacteria, consequently. In this study, for the stabilization of livestock carcasses leachate, advanced oxidation processes utilizing the Fenton reaction was investigated in lab-scale experiments for the treatment for $COD_{Cr}$ of livestock carcass leachate. $COD_{Cr}$ reduction by the Fenton oxidation was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of pH ($x_1$), dosage of $FeCl_2{\cdot}4H_2O$ ($x_2$) and dosage of $H_2O_2$ ($x_3$) on the dependent variables $COD_{Cr}$ concentration ($y_1$). A 1 M NaOH and $H_2SO_4$ was using for pH control, $FeCl_2{\cdot}4H_2O$ was used as iron catalyst and NaOH was used for Fenton reaction. The optimal conditions for Fenton oxidation process were determined: pH, dosage of $FeCl_2{\cdot}4H_2O$ and dosage of $H_2O_2$ were 3, 0.6 g (0.0151 M) and 7 mL(0.259 M), respectively. Statistical results showed the order of significance of the independent variables to be pH > initial concentration of ferrous ion > initial concentration of hydrogen peroxide.