• Title/Summary/Keyword: Burial Sites

Search Result 66, Processing Time 0.032 seconds

Consideration for Historical Application of Augen Gneiss and Petrographic Characteristics for Rock Properties of Donghachong Tomb from Royal Tombs of Neungsanri in Buyeo, Korea (부여 능산리고분군 동하총 석재의 암석기재적 특성과 안구상편마암의 역사적 활용성 고찰)

  • Park, Jun Hyoung;Lee, Gyu Hye;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • The Donghachong tomb from Royal Tombs at Neungsanri is composed of 15 sides including the floor, and the most highly proportion of rock, two-mica granite, are used on the 7 sides (46.6%). Also, augen gneiss consist with another 3 sides (20.0%), and each of the remaining 3 sides (6.7%) are made up of granodiorite, gneissous granite and leucocratic granite, all of which were used to comprise the tabural stone. Meanwhile, the two floors of the burial chamber and the front chamber, are made up of brick-shaped amphibole schist (13.3%). These rocks are occurred in the Buyeo area and their provenance sites are located at the side of Guemgang river. The Memorial Stone for Liu Renyuen in Tang China is a typical augen gneiss showing distinct schistosity and augen texture. This rock has the same petrographic characteristics with the rocks used to build the Donghachong tomb, Sanjikri dolmens and Setapri pagoda in Buyeo. This augen gneiss is distributed from the Jeungsanri in Buyeo to Dukjiri in Gongju as a large scaled rock body, and where currently are the quarries to produce stone aggregates, garden and landscape rocks. Thus, it is highly probable that the site around Buyeo was the source area of augen gneisses since the Bronze Age. However, while augen gneiss is easier to form into shapes it should have disadvantages when it comes to painting on the tomb wall because of their petrographic characteristics of low strength and dark color. Therefore, it is very intriguing to investigate which transportation method the people of Baekje chose with consideration of the distance and terrain, efficiency and convenience.

Interpretation of Firing Temperature and Material Similarity for Potteries from Ancient Tombs in Songpa Area, Seoul (서울 송파 지역 고분 출토 토기의 재료학적 동질성 및 소성온도 해석)

  • Lee, Gyu Hye;Yun, Jung Hyun;Lee, Chan Hee
    • Conservation Science in Museum
    • /
    • v.28
    • /
    • pp.17-34
    • /
    • 2022
  • This study seeks to identify the material characteristics of earthenware excavated from the Bangi-dong Ancient Tomb No. 3 and the articulated stone-mound tomb of the Seokchon-dong ancient tombs in the Songpa region, and analyze the homogeneity and the firing temperature of the materials used at each excavated site. The remains have been studied relatively recently, and the groups of tombs in which they were found demonstrate the transition of ancient Korean burial systems, and at the same time, provide important archaeological data about those in power at the time. The earthenware pottery excavated from the two sites examined in the study were buried at different times, and it is assumed that they were made by procuring weathered soil of similar gneiss, judging from the behavior of the compatible and incompatible elements and the weathering tendency found by examining the main components. In addition, the examination of the mineral composition and microstructure of clay indicates that the earthenware from Seokchon-dong was fired at 950 degrees Celsius or lower at a relatively early stage. On the other hand, the earthenware from Bangi-dong Tomb No. 3 was confirmed to have experienced temperatures below 850 degrees Celsius and above 1,000 degrees Celsius. However, it is difficult to interpret the difference as the result of the changes in firing temperature throughout the eras. It is expected that it will be possible to interpret the changes in earthenware manufacturing techniques by comparing more diverse earthenware potteries and ancient soils.

A Study on the Damage Evaluation of Polyethylene Pipe by Squeeze-off (스퀴즈오프에 따른 PE배관의 손상평가 연구)

  • Ho seong Seo;Hwa young Lee;Jae-hun Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • PE piping, which has advantages in terms of construction convenience and economy, is widely used for underground burial in the domestic urban gas field. These PE pipes use squeeze-off in many sites to block gas flow during maintenance and repair work. Squeeze-off refers to a method of compressing a PE pipe to block fluid flow, and damage may occur due to the nature of construction in which the pipe is deformed by physical force. In order to prevent damage to PE pipes due to squeeze-off, the main points to be reflected in the squeeze-off operation procedures such as proper compression range, use pressure, and diameter were derived through damage assessment and confidential test according to the compression rate. The compression experiment for PE pipe damage assessment was conducted while changing the compression rate (20%~40%), the pressure of use (2.8 kPa, 25 kPa, 70 kPa), and the pipe diameters (63 mm, 90 mm, 110 mm). As a result of damage assessment according to the compression rate, damage occurred in pipes with compression rates of 45%(110mm) and 73%(63mm), which are for analyzing the effect of excessive compression. In addition, the leakage test was conducted using Ar(argon) during the squeeze-off, and as a result of the experiment, leakage occurred under the conditions of 70kPa and 110mm of pipe. As a result of this study, it was confirmed that squeeze-off for airtightness should be carried out in pipes within a range not exceeding 25 kPa and 90 mm pipes, and the appropriate compression rate to prevent damage to PE pipes is 30%.

Monitoring North Korea Nuclear Tests: Comparison of 1st and 2nd Tests (북한 핵실험 모니터링 : 1, 2차 비교)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Che, Il-Young;Sheen, Dong-Hoon;Shin, Jin-Soo;Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • Two suspicious events, which were claimed as underground nuclear tests by North Korea, were detected in the northern Korean Peninsula on October 9, 2006 and May 25, 2009. The KIGAM and Korea-China Joint seismic stations are distributed uniformly along the boundaries between North Korea and adjacent countries. In this study, the data from broadband stations with the distance of 200 to 550 km from the test site are used to analyze and compare two nuclear tests of North Korea. By comparing the time differences of the Pn-wave arrival times of 1st and 2nd tests at multiple stations, the relative locations of two test sites could be calculated precisely. From the geometrical calculation with the velocity of Pn wave $V_{Pn}$ = 8 km/s, the 2nd test site is estimated to move in the WNW direction from 1st one with the distance of 2 km. Body wave magnitude, mb of the 2nd test, which was announced officially as the network average of 4.5, varies widely with the directional location of stations from 4.1 to 5.2. The magnitude obtained from Lg wave, $m_b$(Lg), shows less variation between 4.3 to 4.7 with the average of 4.6. The moving-window spectra of time traces of 1st and 2nd tests show very similar pattern with different scale level. In addition, the corner frequencies of P wave of 1st and 2nd tests at each station show no or negligible difference. This indicates the burial depths of two tests might be very similar. The relative yield amount of the 2nd test is estimated 8 times larger than that of the 1st from the weighted average of ground-velocity amplitude ratios.

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

A Study on the Conditions of Natural Damage of Undesignated Cultural Heritages and the Plans to Reduce Damage through Vegetation Management - With Emphasis on Samcheonsaji Temple Site on Mt. Bukhansan - (비지정 문화유적의 훼손현황과 식생관리를 통한 저감방안 연구 -북한산 삼천사지를 사례로-)

  • Hong, Hee-taek;Kim, Hyeon-beom;Lee, Mun-haeng
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.114-133
    • /
    • 2013
  • This study aims to identify the natural damage of the Samcheonsaji Temple Site in Bukhansan National Park and to suggest the plans to minimize damage for the remains. The types of natural damage are classified into direct vegetation damage, indirect topographical damage, and artificial damage. The most popular causes of damage to temple sites include the roots of trees as direct vegetation damage and the soil erosion by rain or stream as topographical damage. Direct vegetation damage includes burial remains damaged by the root of trees and vines, but it is often observed that some trees have contributed to protection against collapse. Indirect topographical changes have damaged the ruins by soil erosion caused by floods or typhoons. Vegetation changes due to topographical reasons have also caused damage. Artificial reasons of damage include forestry operations and compaction by hikers. Based on the analysis of the findings, the following could be suggested as plans to resolve these problems: 1. Natural damage occurs slowly due to negligence. Therefore, it could be reduced by forestry improvement, including forest density control through thinning, planting to prevent landslides, maintaining grasslands nearby. 2. Deciduous broadleaf trees can be planted to reduce soil erosion by rainfall. It is necessary to maintain the density of forests at around $0.02{\sim}0.18trees/m^2$. 3. It would be good to grow Quercus spp and Carpinus spp or weaken the community of Robinia pseudoacacia and Pueraria lobata which disturb the ecosystem. Samcheonsaji Temple Site is located in Mt. Bukhan National Park that is a publicly owned property. Therefore, it is constantly maintained for natural preservation and vegetation management could be considered for the preservation of historical remains.