• Title/Summary/Keyword: Buoyancy flow

Search Result 268, Processing Time 0.025 seconds

A study on the design of air conditioning system in the mushroom cultivation greenhouse (버섯재배사의 공조시스템 설계에 대한 연구)

  • Ryu, Kyung-Jin;Son, Jae-Hwan;Han, Chang-Woo;Nah, Kyu-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.743-750
    • /
    • 2017
  • It is important to ensure a uniform temperature distribution in greenhouses for the mushroom cultivation. The air temperature of the mushroom cultivation greenhouse is made uniform by supplying a constant air temperature with the underground air. The mushroom cultivation array in a greenhouse in seven columns and four rows can make smooth air flows between the rows and prevent air differences between the top and bottom. The buoyancy effect in the entering air of 0.5m/s based on following density difference depending on initial internal temperature needs to be considered. The locations of the Fan Coil Unit (FCU) and fan were defined through flow analysis in a greenhouse to distribute the optimal uniform temperature. In this study, the air conditioning system of a greenhouse with a sandwich heat insulting panel shape which is composed of a FCU and fan was designed by flow analysis. A relatively uniform temperature distribution can be formed because the circulation path of air becomes longer in the different locations of the FCU (inlet) and fan (outlet) through the internal temperature and flow analysis. The cultivation and quality uniformity of the mushrooms could be promoted through these environmental improvements.

A Comparative Study of Two-Dimensional Numerical Models for Surface Discharge of Heated Water into Crossflow Field (가로흐름 수역으로 방출되는 2차원 표면온배수 수치모형 비교연구)

  • 이남주;최흥식;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.40-50
    • /
    • 1994
  • For an accurate prediction of the temperature field induced by heated water discharged into a shallow crossflow, a two-dimensional near-field numerical model is developed. It is based on a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate are added to those of a 2-equation turbulence model which cannot give the information of the thermal time scale ratio. Vertical diffusion is also considered by including buoyancy production and turbulence heat flux terms. The developed model is applied to a steady flow in an open channel with simple geometry and the results are compared with existing experimental data and those of the already established 2-equation turbulence model. Numerical results of the model agree with the experimental data better than those of the 2-equation model. The present model also simulates quite adequately the physical characteristics of thermal discharge in the jet entrainment and stable regions.

  • PDF

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

An Experimental Study on Heat Flow Characteristics of Inflowing Cool Air in the Room (실내(室內) 유입(流入) 냉기(冷氣)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Pak, J.W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A study on a buoyancy effect by the temperature difference between a inner room air and a inflowing cool air and also by Inlet velocity can contribute greatly to enhance performance of air conditioning system, so the study on the distribution characteristics of inflowed cool air is important to analyze the cool air storage in a room. For this study, in the real-sized model room, the temperature differences between inflowing cool air and inner room air are 10, 20, $30^{\circ}C$, and the inlet velocities of inflowing cool air are 1, 2, 3m/s respectively as dynamic parameters. Also, a anemos and a vane type diffuser are used as inlet geometric conditions. Following conclusions have been obtained through this study. 1) In case of the anemos type diffuser, it is found that a dimensionless temperature profile is low and the distribution of the inflowed cool air is uniform. and also, all diffuusers have a low temperature of the inner room as increasing the inlet velocity. 2) A mixing takes place rapidly in case of the anemos type diffuser when the temperature difference is low ${\Delta}T=10^{\circ}C$ and the inletvelocity is high V=3m/s. and the mixing degree is higher with the anemos type diffuser than the vane.

  • PDF

Solidification Process of a Binary Mixture with Anisotropy of the Mushy Region (머시영역의 비등방성을 고려한 2성분혼합물의 응고과정)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-171
    • /
    • 1993
  • This paper deals with the anisotropy of the mushy region during solidification process of a binary mixture. A theoretical model which specifies a permeability tensor in terms of pricipal values is proposed. Also, the governing equations are modified into convenient forms for the numerical analysis with the existing algorithm. Some test computations are performed for soeidification of aqueous ammonium chloride solution contained in a square cavity. Results show that not only the present model is capable of resolving fundamental characteristics of the tranport phenomena, but also the anisotropy significantly affects the interdendritic flow structure, i.e., double-diffusive convection and macrosegregation patterns.

Application of a Potential-Based Panel Method for Analysis of a 2-Dimensional Cavitating Hydrofoils Advancing Beneath a Free-Surface (자유수면 아래서 유한 Froude 수로 전진하는 2차원 수중익의 부분 및 초월 공동 유동 문제 해석)

  • J.M. Lew;C.S. Lee;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • A potential-based panel method is presented for the analysis of a partially or supercavitating two-dimensional hydrofoil at a finite submergence beneath a free surface, treating without approximation the effects of the finite Froude number and the hydrostatic pressure. Free surface sources and normal dipoles are distributed on the foil and cavity surfaces, their strength being determined by satisfying the kinematic and dynamic boundary conditions on the foil-cavity boundary. The cavity surface is determined iteratively as a part of the solution. Numerical results show that the wave profile is altered significantly due to the presence of the cavity. The buoyancy effect due to the hydrostatic pressure, which has usually been neglected in most of the cavitating flow analysis, is found playing an important role, especially for the supercavitating hydrofoil; the gravity field increases the cavity size in shallow submergence, but decreases it when deeply submerged, while the lift reduces at all submergence depth.

  • PDF

An experimental study on the discharge characteristics of underflow type floating vertical lift gate at free-flow condition (부력식 연직수문의 자유흐름 상태에서 하단방류 특성에 관한 실험적 연구)

  • Han, Il Yeong;Choi, Heung Sik;Lee, Ji Haeng;Ra, Sung Min
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.405-415
    • /
    • 2018
  • Hydraulic variables such as discharge coefficient, gate opening, and upstream water depth are required to calculate the discharge of vertical lift gate. It is very important for a precise gate design, because it may affect the rest, to predict the behavior of gate opening during operation. In this study, an equation by which gate opening could be predicted with any upstream water depths was derived from the relation between the calculated value from buoyancy theory and measured one from experiment for a floating gate model. Downpull force was the reason for the differences between the calculated and the measured and it was verified using pressure coefficient. Also, the relation of discharge coefficient with gate opening ratios was derived. The derived relations were used for flood routing and it was realized that downpull force effect should be fully taken into account during gate design.

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.