• 제목/요약/키워드: Buoyancy flow

검색결과 268건 처리시간 0.03초

터널화재시 연기 거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires)

  • 이성룡;김충익;유홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Six cases of experiments(pool diameter is 6.5cm, 7.3cm, 8.3cm, 10cm, l2.5cm and l5.4cm), in which vertical vents positioned 1m from the fire source symmetrically, were conducted in order to evaluate the effect of the vent on smoke movement. In case of heat release rate under 2MW, smoke front reached to the tunnel exit about 20 see delayed with ventilation and the smoke velocity was proportional to the power of the heat release rate. Temperature after the vent was lower than without vent. In case of l5.4cm pool, the temperature difference was about $50^{\circ}C$. It was confirmed that the thickness of smoke layer was maintained uniformly under the 35% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

고차 정확도의 순수 상류 차분법의 개발 (Development of a High Accuracy Pure Upwind Difference Scheme)

  • 조지룡
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

댐 붕괴에 의한 토양 거동 시뮬레이션 (Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation)

  • 김경성;박동우
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과 (Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon)

  • 김창녕
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.555-562
    • /
    • 1998
  • 비균일 자장이 도가니에 인가되어 있는 상황에서 정상상태의 Czochralski 유동장과 비정상상태의 산소농도장에 대한 연구가 수치해석적인 방법으로 연구되었다. 여기에서 기준 자장의 세기가 B=0.1T, 0.2T, 0.3T의 경우에 대한 연구가 수행되었다. 가열에 의한 부력의 효과와 자유표면의 표면장력에 의한 열모세관 효과에 의하여 유발되는 자오면 유동은 비균일 자장에 의하여 차등적으로 억제되고 있다. 자자의 세기가 증가하면 자오면 유동에서 발생하는 순환류의 중심은 결정으로 접근하며, 순환류의 크기도 작아진다. 결정으로 흡수되는 산소의 세기가 클수록 낮아지며 농도분포는 균일해지는 경향을 갖는다.

  • PDF

핵연료 집합체에 대한 수력적 양력의 해석 (Analysis of Hydraulic Lift Force of a Fuel Assembly)

  • Sim, Yoon-Sub;Oh, Dong-Seok;Hong, Soung-Dug;Kwon, Hyuk-Sung
    • Nuclear Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.95-100
    • /
    • 1990
  • 유체 유동상의 인자로 구성된 핵연료집합체에 걸리는 수력적 양력의 정확한 표현식은 핵연료의 건전성 설계 및 해석에 중요한 인자이다. 그러나 현재까지 이 양력에 대한 이론적인 해석이 제대로 이루어지고 있지 않아 이 분야에 혼란이 빚어지고 있다. 본 논문에서는 핵연료 집합체에 걸리는 수력적 양력에 대한 정확한 표현식을 이론적인 고찰을 통하여 유도하였으며 또한 양력에 관련된 제반 힘 요소들 즉, 압력강하, 부력, 전단응력, 집합체하중, 상호간의 관계를 검토하였다. 유도된 정확한 이론식을 이용하여 양력에 관한 간이식 오차의 특성을 분석한 결과 오차는 4가지 항으로 구성됨과 총 오차의 크기는 노심 유량의 변화 방향에 따라 달라짐을 알 수 있었다. 정량적인 분석을 COBRAIV-I를 이용하여 수행한 결과 총 오차의 크기는 약 1% 정도임이 밝혀졌다.

  • PDF

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

브레이크 디스크 형상에 따른 대류열전달에 의한 방열성능 연구 (STUDY ON COOLING PERFORMANCE BY CONVECTIVE HEAT TRANSFER WITH DIFFERENT DISK BRAKE SHAPES)

  • 박찬우;이동렬
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2016
  • This research is to numerically investigate the convective cooling performance in the Disk brake. Research concentrates on the heat transfer coefficient and cooling performance which are selected with cooling local locations. Cooling performance of the Hole disk has been compared by Ventilated Disk. According to the results of heat transfer on the disk brake, activated velocity distributions more appear in the Hole disk. This is due to the fact that a number of hole units have exactly 120 on the surface of the hole disk. Therefore, velocity distributions of hole disk brake is better activated than Ventilated disk. According to the calculations of Nusselt number between surface and atmosphere in the interested cooling area, average value of cooling effect has been increased 13.5% by the hole disk at driving of speed 65 km/h situation and grown 18% by the hole disk at driving speed of 100 km/h. Due to the flow of air through the hole route, cooling performance of the hole disk was very excellent. In addition, cooling effect on edge of the bottom is better than the vicinity of center.

Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향 (Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process)

  • 문승재;노승탁
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.

실측 분석기법과 시뮬레이션 분석 기법에 의한 아트리움 열환경 개선에 관한 연구 (A Study on the Improvement of Thermal Environment by a method using thermometers and computer simulations on the Atrium)

  • 이소연;안정수;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.28-34
    • /
    • 2009
  • The atrium in the building has many advantages including its aesthetic and functional effect. But the upper part of the atrium has the thermal problem of overheating due to insolation through the window. But natural ventilation aided buoyancy effect can be a solution to make comfortable indoor environment. Proper design of openings is very important to improve thermal environment in the atrium. In this study, thermal evaluations were performed to improve thermal environment in the atrium. Indoor thermal environment of an atrium at Seoul was measured in the field and simulated with Computational Fluid Dynamics( CFD) code. The turbulent flow model adopted is $K-{\varepsilon}$ model. The results of computer simulations are compared with the measurements at the point in the atrium. In order to improve the indoor ventilation environment of the atrium, thermal environment evaluations of six alternatives were conducted. After evaluations of the results, the design guidelines of an atrium are suggested.