• 제목/요약/키워드: Buoyancy can

검색결과 205건 처리시간 0.022초

고정식 부력을 이용한 염도 및 수위 측정 방식에 대한 연구 (Salinity and water level measuring device using fixed type buoyancy)

  • 양승영;변경석
    • 융합신호처리학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2020
  • 염전의 자동화 시스템 구성을 위해서는 증발지의 염도 및 수위 측정이 필요하다. 이를 위해 본 논문에서는 2개의 고정된 부력체의 부력을 측정하여 함수의 염도 및 수위를 동시에 측정할 수 있는 방법을 제안하였다. 제안된 측정방식은 측정 장치가 함수에 잠기게 될 때 주부력체와 비교부력체의 부력을 측정하고, 두 부력의 합과 차를 통해 염도와 수위를 동시에 측정하는 것이다. 부력의 측정에 기계적인 움직임이 없어서 뻘이 포함된 염전의 환경에서 측정 오류와 유지보수가 필요성을 줄일 수 있다. 제안된 방법을 적용하여 염전의 증발지에서 원격으로 염도 및 수위를 동시에 측정할 수는 있는 시스템을 개발하였다. 여러 수준의 염도를 갖는 기준함수를 사용한 측정 실험을 통하여 염도 오차 0%, 수위 오차 2mm의 결과를 얻고, 제안된 염도 및 수위 측정 장치의 유효성을 확인하였다. 개발된 염도 및 수위 측정 장치를 활용하여 자동화 시스템을 구성할 경우 노동력 절감 및 작업 환경 개선과 생산성 증진이 기대된다.

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

비결정질 실리콘 박막 상에서의 광열 유동을 이용한 액적 조작 (A Droplet-Manipulation Method using Opto-thermal Flows on Amorphous Silicon Thin Film)

  • 이호림;윤진성;김동성;임근배
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.91-96
    • /
    • 2014
  • We present a droplet-manipulation method using opto-thermal flows in oils. The flows are originated from Marangoni and buoyancy effects due to temperature gradient, generated by the adsorption of light on an amorphous silicon thin film. Using this method, we can transport, merge and mix droplets in an extremely simple system. Since the temperature rise during the operation is small, this method can be used for biological applications without the damage on cell viability.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

조선시대 거북선 모델에 따른 내부 갑판구조 연구 (Study on Internal Deck Structure of Turtle Ships Developed in Chos$\breve{o}$n Dynasty Era)

  • 한원흠;정형식;이문호
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.871-879
    • /
    • 2011
  • The internal deck structure of turtle ship has been investigated with the following approach manner. Firstly the 5 species of turtle ship are identified by examining the characteristics of 5 turtle ships revealed by the librarian or paintings. Secondly the centers of gravity and buoyancy for each type are calculated to evaluate the turtle ship's buoyancy stability. Thirdly the optimal deck structures for 5 turtle ships are additionally assessed from the viewpoint of the interoperability of soldier's missions to get more meaningful conclusion. From the results obtained by the well refined analyses above, one can identify that Changjeguyseon and Lee Chung Mu Gong descendent family's turtle ship possess one layer deck, and the tongjeyoung and jwasuyoung turtle ship consist of 1 and half story deck, and the one disclosed by Yoon has 2 story structure.

수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발 (Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate)

  • 성형진;정명균
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

Environmental Factors in a Realistic 3D Fishing-Net Simulation

  • Yoon, Joseph;Kim, Young-Bong
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.84-89
    • /
    • 2014
  • The mass-spring model has been typically employed in physical-based simulators for clothes or patches. The mass-spring model frequently utilizes equal mass and the gravity factor. The model structure of masses supports a shape applicable to fishing nets. Therefore, to create a simulation model of a fishing net, we consider the mass-spring model and adopt the tidal-current and buoyancy effects in underwater environments. These additional factors lead to a more realistic visualization of fishing-net simulations. In this paper, we propose a new mass-spring model for a fishing-net and a method to simplify the calculation equations for a real-time simulation of a fishing-net model. Our 3D mass-spring model presents a mesh-structure similar to a typical mass-spring model except that each intersection point can have different masses. The motion of each mass is calculated periodically considering additional dynamics. To reduce the calculation time, we attempt to simplify the mathematical equations that include the effect of the tidal-current and buoyancy. Through this research, we expect to achieve a real-time and realistic simulation for the fishing net.

온도차 자연환기 이론의 유량계수에 대한 연구 (A Study of Discharge Coefficient for Thermal Buoyancy Natural Ventilation)

  • 신동신;고현준;김세형;선지형;윤상민;이진영
    • 설비공학논문집
    • /
    • 제27권12호
    • /
    • pp.639-644
    • /
    • 2015
  • This study reviews the discharge coefficient for thermal buoyancy natural ventilation through experimentation. We measure the air velocity at the outlet, which is needed to derive the discharge coefficient and to compare with the theoretical value. When a temperature difference exists between the inside and outside of the building, the measured discharge coefficient differs from the theoretical value with a maximum difference of 12%. The size and position of the openings have little effect on the discharge coefficient. For practical application, the theoretical discharge coefficient can be used with little modification.

Calculation of ice clearing resistance using normal vector of hull form and direct calculation of buoyancy force under the hull

  • Park, Kyung-Duk;Kim, Moon-Chan;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.699-707
    • /
    • 2015
  • The ice-resistance estimation technique for icebreaking ships had been studied intensively over recent years to meet the needs of designing Arctic vessels. Before testing in the ice model basin, the estimation of a ship's ice resistance with high reliability is very important to decide the delivered power necessary for level ice operation. The main idea of previous studies came from several empirical formulas, such as Poznyak and Ionov (1981), Enkvist (1972) and Shimansky (1938) methods, in which ice resistance components such as icebreaking, buoyancy and clearing resistances were represented by the integral equations along the Design Load Water Line (DLWL). The current study proposes a few modified methods not only considering the DLWL shape, but also the hull shape under the DLWL. In the proposed methodology, the DLWL shape for icebreaking resistance and the hull shape under the DLWL for buoyancy and clearing resistances can be directly considered in the calculation. Especially, when calculating clearing resistance, the flow pattern of ice particles under the DLWL of ship is assumed to be in accordance with the ice flow observed during ice model testing. This paper also deals with application examples for a few ship designs and its ice model testing programs at the AARC ice model basin. From the comparison of results of the model test and the estimation, the reliability of this estimation technique has been discussed.

비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구 (Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term)

  • 이공희;정애주
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.