• 제목/요약/키워드: Buoyancy Flow

검색결과 268건 처리시간 0.023초

수직 투과 흐름이 있는 수평 다공질 유체층에서의 부력 효과 (The Buoyancy Effects in Horizontal Porous Layers with Vortical Through Flow)

  • 김민찬;김신;윤도영;김세훈
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.266-271
    • /
    • 2001
  • 투과 흐름이 있는 수평 다공질 유체층에서 부력에 의하여 발생하는 자연대류 현상을 선형 안정성 이론을 사용하여 해석하였다. 다공질 층에서의 유동 특성을 나타내기 위하여 Dacrcy 법칙을 사용하였다. 선형 안정성 해석 결과를 근거로 자연대류 발생점 근처에서 비선형 해석을 하여 열전달 상관관계를 얻었다. 해석 결과 투과 흐름의 세기가 커짐에 따라 계는 점점 안정해 지고, Darcy-Rayleigh수의 변화에 따른 Nusselt수의 변화는 감소하였다.

  • PDF

유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석 (Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes)

  • 명현국
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구 (Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term)

  • 이공희;정애주
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.

칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가 (Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria)

  • 이공희;방영석;우승웅
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.363-369
    • /
    • 2012
  • CANDU형 원전의 칼란드리아 내부 감속재 열유동은 입구 노즐에서 나온 제트 유동에 의해 발생하는 관성력과 감속재로 전달되는 열부하에 의해 발생하는 부력의 상호작용으로 인해 복잡한 난류 특성을 나타낸다. 본 연구에서는 이러한 복잡한 감속재 열유동을 정확히 예측하기 위한 난류모델의 성능을 평가하기 위해 상용 유동해석 프로그램인 FLUENT에 탑재된 난류모델들을 사용해서 계산한 결과를 Sheridan Park Engineering Laboratory (SPEL)의 실험값과 비교하였다. 결론적으로 CANDU형 원전의 칼란드리아 내부 감속재 열유동을 신뢰할 수 있게 예측하기 위해서는 부력이 난류 유동에 미치는 영향을 고려해주는 생성항을 포함한 난류 모델이 사용되어야 한다.

원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달 (Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet)

  • 홍기혁;강신형
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

유체의 물성치변화를 고려한 수직원형관내 고온기체유동에 관한 직접수치모사 (Direct Numerical Simulation of Strongly-Heated Internal Gas Flows with Large Variations of Fluid Properties)

  • 배중헌;유정열;최해천;유종우
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1289-1301
    • /
    • 2004
  • Direct numerical simulation (DNS) of strongly-heated air flows moving upward in a vertical tube has been conducted to investigate the effect of gas property variations on turbulence modification. Three heating conditions(q$_1$$^{+}$=0.0045, 0.0035 and 0.0018) are selected to reflect the experiment of Shehata and McEligot (1998) at the inlet bulk Reynolds numbers of 4300 and 6000. At these conditions, the flow inside the heated tube remains turbululent or undergoes a transition to subturbulent or laminarizing flow. Consequently, a significant impairment of heat transfer occurs due to the reduction of flow turbulence. The predictions of integral parameters and mean profiles such as velocity and temperature distributions are in excellent agreement with the experiment. The computed turbulence data indicate that a reduction of flow turbulence occurs mainly due to strong flow acceleration effects for strongly-heated internal gas flows. Thus, buoyancy influences are secondary but not negligible especially for turbulent flow at low heating condition. Digital flow visualization also shows that vortical structures rapidly decay as the heating increases.s.

복합 건축물 연결 통로에서의 기류형성에 관한 수치적 해석 연구 (A NUMERICAL STUDY ON FLOW PATTERN IN CONNECTING PASSAGEWAY OF A COMPOSITE BUILDING)

  • 전병진;장병윤;최형권
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.81-86
    • /
    • 2010
  • In this paper, a three-dimensional numerical study on flow pattern in winter along connecting passageway of a composite building was conducted using a commercial CFD package. The incompressible Navier-Stokes equation coupled was solved by using SIMPLE algorithm in order to find steady solutions. It was shown that a upward flow is generated inside the building in winter due to buoyancy effect and that the air inside connecting passageway flows from the shorter building to the taller one regardless of the slope of the passageway. Further, it was found that the magnitude of air velocity inside connecting passageway increases as the uphill slope to the taller building increases and decreases as the downhill slope to the taller one increases, although the variation in the magnitude of fluid velocity is not substantial. Lastly, it was shown that the maximum air velocity inside connecting passageway is less than the allowable limit for all the cases considered in this study.

관내 유동 플라스틱 슬러리의 열전달 특성 (Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

3차원 진단모델을 이용한 진해만의 수치유동실험 (Circulation Experiment of the Chinhae Bay using a Three-Dimensional Diagnostic Numercal Model)

  • 배삼완
    • 수산해양기술연구
    • /
    • 제33권4호
    • /
    • pp.360-369
    • /
    • 1997
  • We calculated the residual current forced by buoyancy, wind stress, and tidal stress in the Chinhae Bay using a three-dimensional diagnostic model. The calculated current was also compared with the observation. The flow directs outward from the central area of the Bay in the upper layer, and also forms eddy-shape stucture in the upper and middle layers. The flow of bottom layer shows an opposite pattern compared to those of top and middle layers. The maximum speed was 6.05 em/see (September) and 3.49 cm/sec (November) in the upper layer, and 4.39 cm/sec on both month in the middle layer. The Kinetic energy of November (8.39xlO' W) was larger than that of September (1.24xlO 'W), mainly resulting from larger buoyancy effect in September. In spite of the roughness of the grid size(1 km) and wind date, the calculated flow shows eorrelation(r=0.71) with the observation. We expect that the correlation be increased by increased by adopting the fine grid and the variable coefficients of diffusion and viscosity.

  • PDF

Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Chung, Suk Ho;Choi, Jae Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.102-106
    • /
    • 2016
  • An experimental study on the flow characteristics under various laminar coflow diffusion flames was conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), ethylene ($C_2H_4$), and n-butane ($C_4H_{10}$) were used as the fuels. A coflow burner and the Schlieren imaging technique were used to observe the flow field of each fuel near the nozzle exit as well as the flow characteristics in the flames. The results show that a vortex with a density heavier than air appeared in n-butane near the nozzle exit with a strong negative buoyancy on the fuel steam. As the Reynolds number increased through the control of the fuel velocity of the n-butane flame, the vortices were greater and the vortex tips were moved up from the nozzle exit. In addition, the heated nozzle affected the flow fields of the fuel steam near the nozzle exit.