• 제목/요약/키워드: Buoyancy

검색결과 766건 처리시간 0.025초

부력엔진 독립시험 모듈 심해공학수조 시험과 실해역 시험 (Buoyancy Engine Independent Test Module Test in the the Deep Ocean Engineering Basin and at Sea)

  • 이종무;김형우;임흥현
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.629-634
    • /
    • 2024
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO) has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module has been tested in the Ocean Engineering Basin(C.M.Lee et al., 2023). After that, more tests were performed in the Deep Ocean Engineering Basin and at sea. In the 50-meter depth pit test of the Deep Ocean Engineering Basin, there were no problems with the ascent and descent operations, but the buoyancy engine was not properly maintained due to various problems in the independent test module, resulting in a difference between the calculated results using the solution of the equations of motion and the actual measurement results. The East Sea test was conducted at a depth of approximately 110 meters north-east of Pohang, with a dive to 100 meters. The difference between the pressure sensor value and the calculated value was observed, but after checking the results of the underwater position tracking device(USBL, Ultra Short Base Line system), it was estimated that the difference was caused by the influence of the current.

THERMALLY DRIVEN BUOYANCY WITHIN A HOT LAYER DUE TO SPRINKLER OPERATION

  • Nyankina, K.;F Turan, O.
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.625-632
    • /
    • 1997
  • A two-dimensional zone-like model is developed to predict the interaction between hot gas layer and water droplets after sprinkler activation. The model combines the motion equations for each droplet with heat and mass transfer between the gas and water. The results indicate that negative buoyancy in the hot layer can only be obtained if the initial temperature profile is uniform. If an experimental profile Is used instead, positive buoyancy results. This conclusion has been confirmed with experimental data.

  • PDF

층류 동축류 제트 부상화염에서 부력에 의한 자기진동과 루이스 수에 의한 자기진동 비교에 관한 실험적 연구 (Experimental Study on Comparison of Buoyancy Driven and Lewis Number Induced Self-excitations in Laminar Lifted Coflow-jet Flames.)

  • 반규호;이원준;박정;길상인;윤진한;임인권
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.367-369
    • /
    • 2014
  • A study on laminar coflow jet flames diluted with helium and nitrogen has been conducted to investigate self-excitations. The stability map was provided with a function of nozzle exit velocity and fuel mole fractions of propane or methane. The results show that there exist three types of self-excitations; (1) buoyancy-driven self-excitation (BDSE), (2) Lewis number induced self-excitation coupled with buoyancy (LCB) and (3) Lewis number induced self-excitation (LISE).

  • PDF

Dynamics Modeling and Behavior Analysis of Underwater Glider System

  • Nam, Keon-Seok;Kim, Donghee;Choi, Hyeung-Sik;Lee, Shin-je;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.25-31
    • /
    • 2017
  • Generally, underwater gliders do not have separate propellers for their forward movement. They derive a propulsive force due to the difference between their buoyancy and gravity. The attitude of an underwater glider is controlled by changing the relative position of the buoyancy center and mass center. In this study, we derived nonlinear 6-DOF dynamic and mathematical models for the motion controller and buoyancy controller. Using these equations, we performed dynamic underwater glider simulations and verified the suitability of the design and dynamic performance of the proposed underwater glider.

부력을 이용한 연약지반용 방파제의 거동분석 (The behavior of breakwaters utilizing buoyancy for soft ground)

  • 윤희석;장인성;권오순;이선재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.300-310
    • /
    • 2008
  • A series of numerical simulations on the several types of breakwaters on the foundation systems utilizing buoyancy were carried out in plane-strain conditions using the modified Cam-Clay model and the Biot's consolidation theory. Improved foundation system by the replacement of original ground with light weighted material, expandable poly-styrene (called below EPS) and several foundation systems with buoyant cells were used. From the results of numerical simulations we found that the foundation systems utilizing buoyancy are efficient to reduce the maximum consolidation settlements without reducing lateral safety.

  • PDF

부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석 (Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect)

  • 손창현;안성태;장재환
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발 (Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow)

  • 임홍영;최영돈;김용찬;김민수
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

대수층 축열시스템의 열거동에 관한 실험적 연구 (An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System)

  • 이세균;문병수;남승백;김기덕
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1780-1787
    • /
    • 1992
  • 본 연구에서는 대수층을 시뮬레이션한 실험장치를 통하여 온도분포를 관찰하 고 자연대류에 관한 단순화된 이론적 모델을 개발하여 실험치와 비교 검토하고자 한 다.

TRUCK CAB 전착 도장 시 부력 방지용 HOLE 영향 평가 (Evaluation of The Holes Reducing Buoyancy During Painting of A Truck Cab)

  • 임정환
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.42-49
    • /
    • 2004
  • When a truck cab is conveyed at a constant speed by a hanger and immersed into the painting reservoir, it may fall off from the hanger by buoyancy. In order to reduce the buoyancy, on the bottom of a cab panel are holes placed, which allow paint to flow into the inside of a cab. In this study, a differential equation is derived which can be solved numerically by using 4th-Order Runge-Kutta method to calculate transient behavior of the buoyant force with sizes and locations of the holes given. The solution is utilized to optimally determine sizes and locations of the holes.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.