• Title/Summary/Keyword: Buoy Motion

Search Result 69, Processing Time 0.022 seconds

The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave (파도를 이용한 2자유도 파력진동발전시스템에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1028-1034
    • /
    • 2011
  • This paper have been studied that ocean wave power vibration generation system with two D.O.F.(degree of freedom) consists of buoy and vibration generation system with two D.O.F. for using efficiency of ocean wave energy. It selected main frequencies ${\omega}_1$, ${\omega}_2$ in frequency with ocean wave and it fitted them to the natural frequencies of vibration system with two D.O.F. in the vibrational power generation system. Then each the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion by resonance phenomenon. Also the ocean wave power generation with two D.O.F. obtained the more electric energy then the ocean wave power generation with one D.O.F. by coupling effect for two D.O.F. vibration system. Therefore ocean wave power vibration generation system with two degree of freedom that is proposed in this paper has merits which not only using more energy in the ocean wave but also obtaining more electronic energy.

Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces (강한 인장 상태에서의 계류 체인 링크의 휨 거동)

  • Kim, Seungjun;Won, Deok-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2017
  • This paper presents the study of the bending behavior of mooring chain links for keeping the position of the offshore floating structures. In general, chain links have been thought as the axial members due to the fundamental boundary condition. But, the flexural stiffness can be induced to the contact surface between chain links when friction occurs at the surface of the chain links due to high tensile force. Especially, the mooring chains for offshore floating platforms are highly tensioned. If the floater suffers rotational motion and the mooring chain links are highly tensioned, the rotation between contact links, induced by the floater rotation, generates the bending moment and relevant stresses due to the unexpected bending stiffness. In 2005, the mooring chain links for the Girassol Buoy Platform were failed after just 5 months after facility installation, and the accident investigation research concluded the chain failure was mainly caused by the fatigue due to the unexpected bending stress fluctuation. This study investigates the pattern of the induced bending stiffness and stresses of the highly tensioned chain links by nonlinear finite element analysis.

Numerical Analysis on the Pressure Distributions around a Circular Cylinder by Control Rods (제어봉에 의한 원형실린더 주위의 압력분포에 관한 수치해석)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.485-490
    • /
    • 2007
  • The purpose in having a control rod on a buoy system is to control the motion of it. The system may be composed entirely of a single circular cylinder and a long mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference. then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based on the cylinder diameter(D=50mm) to predict the performance of the body and the 2 frame particle tracking method Iud been used to obtain the velocity distribution in the flow field. 50mm circular cylinder Iud been used during the whole experiments and measured results had been compared with each other.

Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter (부유식 진동수주형 파력발전기(BBDB)의 유체 동역학적 성능 실험 연구)

  • Kim, Sung-Jae;Kwon, Jinseong;Kim, Jun-Dong;Koo, Weoncheol;Shin, Sungwon;Kim, Kyuhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.53-58
    • /
    • 2012
  • An experimental study on the hydrodynamic performance of a backward bent duct buoy (BBDB) was performed in a 2D wave tank. The BBDB is one of the promising oscillating water column (OWC) types of floating wave energy converters. Two different corner-shaped BBDBs (sharp-corner and round-corner) were used to measure the maximum chamber surface elevations and body motions for various incident wave conditions, and their hydrodynamic characteristics were compared. In order to investigate the effect of the pneumatic pressure inside the chamber, the heave and pitch angle interacted with elevations were compared for both open chamber and partially open chamber BBDBs. From the comparison study, the deviation in the chamber surface elevations between the two shapes of BBDBs was found to be significant near the resonance period, which may be explained by viscous energy loss. It was also found that the pneumatic pressure noticeably affected the chamber surface elevation and body motions.

A Study on the Flow Control around a Circular Cylinder by Control rods (제어봉을 부착한 원형실린더 주위 유동제어에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.169-174
    • /
    • 2007
  • The purpose in having a control rod an a buoy system is to control the motion of it. The system may be composed entirely af a single circular cylinder finder and a lang mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference, then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based an the cylinder diameter(D=50mm) to. predict the performance af the body and the 2 frame particle tracking method had been used to obtain the velocity distribution in the flaw field 50mm circular cylinder had been used during the whale experiments and measured results had been compared with each other.

  • PDF

Estimation of Wave Energy Extraction Efficiency for a Compact Array System of Small Buoys (밀집 배열 부이시스템의 파랑에너지 추출 효율 추정)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A compact array system of small buoys is used for wave energy extraction. To evaluate the performance of this system, hydrodynamic analysis is carried out in regular waves using the higher order boundary element method. The motion response of each buoy is calculated considering hydrodynamic interactions caused by other buoys. The effect of energy extraction device is modeled as a linear damping load. The efficiencies of energy conversion are compared using the various sizes and arrangements of the array system and the damping coefficients for energy extraction. The increase in size or the packing ratio of the system gives better efficiency. However, the wave condition and the cost for the system should be considered to optimize performance from the perspective of engineering and economics. The proposed nondimensionalized damping coefficient for energy extraction is 0.1~0.5.

PIV Analysis on the Flows around a Cylinder under Rolling Wave (파랑상태에 있는 실린더 구조물 주위의 PIV유동 해석)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Lee, Eon-Ju
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2011
  • The purpose of the study is to provide a foundation in predicting a maximum wave force when the ocean structure is laid out under breaking wave. Experiments were conducted with a down-scaled cylindrical model installed in a wave generating water channel. Maximum wave slopes were changed in regular wave condition by the wave breaker in the water channel. Cylinder's diameters were changed to 0.1m and 0.05m, respectively. Using the PIV results qualitative analyses were performed based upon the previous knowledge.

A Study on Nonlinear Analysis of Mooring Lines (계류삭의 비선형운동특성해석에 관한 연구)

  • Sang-Moo,Lee;Yong-Chul,Kim;Young-Whan,Kim;Seok-Won,Hong;Hun-Chol,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 1986
  • This paper investigates the static configurations and the dynamic behaviors of a single point mooring line. To obtain the static configuration and static tension distribution along the mooring line, including the effect of fluid nonlinear drag and the elasticity of the line, the Runge-Kutta fourth order numerical method was used. The relationship between the horizontal excursion and the horizontal restoring force component of the mooring line, which is very important to a mooring line design, and the effect of a subsurface buoy on the static configuration are presented. In nonlinear dynamic analysis including nonlinear fluid drag acting on the line and geometrical nonlinearity for large deflections, finite element method using updated Lagrangian was used to obtain the solution. In the case of upper end harmonic excitation of the mooring line, the dynamic motion and the tension were also presented.

  • PDF

Loads and motions for a spar-supported floating offshore wind turbine

  • Sultania, Abhinav;Manuel, Lance
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.525-541
    • /
    • 2016
  • An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.

해양통신에서 uplink coverage 확장을 위한 relay 송수신 기법연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.77-78
    • /
    • 2022
  • Currently, communication at sea is more difficult than communication at inland due to the movement of route signs by waves. This paper conducts research on relay transmission and reception techniques to extend coverage in uplink situations. The uplink maritime communication environment between inland base stations and buoys located a certain distance inland was viewed as two hops, and a beam generated according to the number of antennas was selected and a performance analysis was conducted considering the movement of buoys measured by sensors.

  • PDF