• 제목/요약/키워드: Bunker

검색결과 142건 처리시간 0.027초

황산염 환원세균에 의한 Dibenzothiophene, 원유 및 Bunker C 유의 탈황 (Degradation of Dibenzothiophene, and Desulfurization of Crude Oil and Bunker C Oil by Sulfate Reducing Bacteria)

  • 김해영;김태성;김병홍
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.31-34
    • /
    • 1990
  • 중온성과 고온성인 황산염 환원세균들을 사용하여 dibenzothiophene, 원유 및 Bunker C 유의 탈황실험을 하여 중온성인 분리균주 Desulfovibrio desulfuricans M6는 dibenzothiophene, crude oil를 42, 17 까지 탈황시켰으며, 고온성은 Desulfovibrio thermophilus에서 dibenzothiphene Bunker C 유를 각각 68, 33 탈화시켜, 황산염 환원세균에 의한 석유의 탈황 가능성을 보였다. 또한 Desulfovibrio 속과 Desulfotomaculum 속의 탈황 능력의 차이로부터 탈황기작이 hydrogenase와 환원력 원인 수소가 관련이 있다는 것을 알았다.

  • PDF

C 중유의 황 함유량에 따른 CO2 배출 특성 (CO2 Emission Characteristics of Bunker C Fuel Oil by Sulfur Contents)

  • 임완규;도진우;황인하;하종한;이상섭
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.368-377
    • /
    • 2015
  • Bunker C fuel oil is a high-viscosity oil obtained from petroleum distillation as a residue. The sulfur content of bunker C fuel oil is limited to 4.0% or even lower to protect the environment. Because bunker C fuel oil is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, carbon dioxide is emitted as a result of combustion. The objective of this study is to investigate $CO_2$ emission characteristics of bunker C fuel oil by sulfur contents. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and $CO_2$ emission factors were determined. The results showed that hydrogen content increases and carbon content decreases by reducing sulfur contents for bunker C fuel oil with sulfur contents less than 1.0%. For sulfur contents between 1.0% and 4.0%, carbon content increases as sulfur content decreases but there is no evident variation in hydrogen content. Net calorific value increases by reducing sulfur contents. $CO_2$ emission factor, which is calculated by dividing carbon content by net calorific value, decreases as sulfur content decreases for bunker C fuel oil with sulfur contents less than 1.0% but it showed relatively constant values for sulfur contents between 1.0% and 4.0%.

One-Shot법을 이용한 폴리우레탄계 유겔화제의 특성 (Oil Gelling Agents made from Polyurethane by One-Shot Method)

  • 김동성;김원호
    • 접착 및 계면
    • /
    • 제3권2호
    • /
    • pp.1-8
    • /
    • 2002
  • 물과의 발포반응에 의해 유츌유를 겔화할 수 있는 폴리우레탄 NCO prepolymer를 제조하기 위하여 폴리올(PTMG 및 GP)과 이소시아네이트(TDI)를 사용하여 NCO prepolymer를 합성하였다. 폴리올 각각의 분자량에 따라 합성한 NCO prepolymer를 이용하여 초기 유출유와 에멀젼된 유출유 그리고 유출유의 종류에 따라 유겔화율을 측정하였다. Bunker B 초기 유출유에 대하여 3관능성 폴리오인 GP1000의 경우 440%의 유겔화율은 나타내었으며, 유출유와 해수가 에멀젼(emulsion)된 상태에서는 2배 정도가 증가한 958%의 유겔화율을 나타내었다. 또한 Bunker B에 비해 점도가 높은 Bunker C의 에멀젼된 상태에서는 1098%의 유겔화율을 나타내었다. 사슬연장제가 투입된 2관능성 폴리올인 PTMG1000의 경우에는 에멀젼된 Bunker B에 대하여 910%의 유겔화율을 나타내었으며, 에멀젼된 Bunker C에 대하여 923%의 유겔화율을 나타내었다. 3관능성 폴리올을 사용하여 제조된 NCO prepolymer의 경우, 형성된 폴리우레탄 겔은 부드럽고 강한 특성을 가져 회수에 용이한 상태를 나타내었다.

  • PDF

소형 어선용 디젤기관에서의 연료유 성상에 따른 배기배출물 특성에 관한 연구 (An experimental study on characteristics of exhaust emissions with fuel properties changes in a diesel engine for small-sized fishing vessel)

  • 서정주;왕우경;김상암
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.487-494
    • /
    • 2010
  • In order to test the applicability of bunker-A in a diesel engine for small-fishing boat, the investigation of the engine performance and the exhaust emission was performed under various conditions of fuel property, intake air pressure and fuel temperature. It was also performed based on IMO NOx Technical code. At high load, the energy consumption rate of bunker-A was lower than that of diesel oil, and the characteristics of exhaust emission of bunker-A were similar to those, and NOx emission rates of both fuels satisfied the IMO NOx emission regulation limits. The energy consumption rate and characteristics of exhaust emission were improved as the intake air pressure was increased, but these were not improved remarkably as the temperature of bunker-A was heated. However, at low load the energy consumption rate, CO emission rate and HC emission rate of bunker-A were higher than those of diesel oil, but NOx emission rates of the fuels were about the same. In addition, at low load the energy consumption rate and CO emission rate of bunker-A were increased as the intake air pressure and the temperature were higher than normal conditions. Accordingly, it is thought that the use of bunker-A in a kind of test engine is possible at high load. On the other hand, it is thought that more research is needed to improve the combustion efficiency under low temperature and low load condition.

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

균질기에 의해 혼합된 물-벙커유의 배기가스 배출 특성에 관한 연구 (A Study on Characteristics of Exhaust Gas Emissions of Water-Bunker Oil Mixed by Homogenizer)

  • 최정식;한상구;최재혁;박상균;박노성;김대헌
    • 해양환경안전학회지
    • /
    • 제19권5호
    • /
    • pp.518-524
    • /
    • 2013
  • 본 연구에서는 균질기에 의해 혼합된 물과 벙커-A를 보일러로 연소하였을 때의 배기 배출물 특성에 대해 연구를 수행하였다. 그 결과로 균질기로 균질화 된 벙커-A의 경우, 순수 벙커-A에 비해 NOx 농도는 19 %, CO 농도는 54 % 감소를 나타냈다. 물-벙커A의 경우 물 혼합 비율이 증가할수록 NOx 농도분포가 낮아지는 것을 확인할 수 있었다. 특히, 20 %물-80 %벙커-A의 경우 순수한 벙커-A 보다 배기가스 내 NOx 농도가 45 %까지 감소하였다. 그러나 20 %물-80 %벙커-A의 경우, CO농도 분포는 불규칙한 변화를 나타냈다. 이것은 일정량 이상의 물 혼합은 보일러의 연소 성능 저하 원인이 될 수 있다는 것을 의미한다. 이 결과로부터 본 연구에서 보일러의 정상 연소를 위한벙커A유 내 물의 한계 혼합율은 15 % 인 것을 알 수 있었다. 연돌 부근에서 채취한 매연 부착양은 물의 혼합율이 증가할수록 감소하였다.

부산근해에서 분리한 Bunker Oil 관련화합물 분해세균의 특성 (Characterization of Bunker Oil-Related Compounds Degrading Bacteria Isolated from Pusan Coastal Waters)

  • 최진;김종구;박근태;손홍주;김희구;이상준
    • 한국환경과학회지
    • /
    • 제8권4호
    • /
    • pp.451-456
    • /
    • 1999
  • Microorganisms utilizing petroleum as substrate were screened from the seawater in Pusan coastal area. Among them, fifty strains utilized bunker-A oil as a sole carbon and energy source. Five of these fifty strains were selected to experiment this study. According to the taxonomic characteristics of its morphological, cultural and biochemical properties, the selected stains were named Pseudomonas sp. EL-12, Flavobacterium sp. EL-15, Acinetobacter sp. EL-18, Enterobacter sp. EL-27 and Micrococcus sp. EL-43, respectively. The optimal medium compositions and cultural conditions for assimilation of bunker-A oil by the selected strains were 1.5-2% bunker-A oil, 0.1% $NH_4NO_3$, 1-1.5% $MgSO_4$.$7H_2O$, 0.05-0.15% KCl, 0.1-0.15% $CaCl_2$.$2H_2O$, 2.5-3.5% NaCl, initial pH 8-9, temperature 3$0^{\circ}C$ and aeration, respectively. The utilization and degradation characteristics on the various hydrocarbons by the selected stains were showed that bunker oil, n-alkane and branched alkane compounds were highly activity than cyclic alkane and aromatic hydrocarbon compounds.

  • PDF

혼합배양 해양세균에 의한 Bunker-C유의 생물분해 (Biodegradation of Bunker-C Oil by the Mixed Enrichment Culture of Marine Bacteria)

  • 박인식;박중연;서근학;홍용기
    • 한국수산과학회지
    • /
    • 제20권2호
    • /
    • pp.152-156
    • /
    • 1987
  • 최근 석유류의 유출로 인하여 자연생태계의 오염이 심각한 문제로 대두되고 있으므로 본 연구에서는 부산, 충무, 울산 연근해의 해수 및 해저질을 체취하여 bunker-C유와 함께 enrichment culture시켜 만들어진 혼합배양세균을 사용하여 소량의 영양염이 첨가된 해수에서 bunker-C유의 생물분해에 미치는 영향을 조사하였다. 혼합배양세균들의 배양시간에 따른 bunker-C유 유화분산 정도는 PH를 7.6으로 완충시켜주면 유탁도는 2.2까지 증가하고 생균수도 $8.7\times10^8\;cell/ml$까지 증가하며 배양 10일만에 약 $48\%$의 유류를 생물분해시켰다. 그리고 영양염의 영향에 있어서는 질소원과 인산원의 첨가가 필수적으로 요구되며, 유류의 황함량과 유류의 질에는 별로 영향을 받지 않고 높은 유탁도를 나타내었다. pH의 범위는 7.0에서 8.0사이에서 높은 유탁도 증가를 보이며, 유류의 량은 7.5 g/l 농도까지 유화분산을 잘 시켰다.

  • PDF

방카 C 중유의 점도에 관한 실험 (On the viscosity of Bunker C fuel oil)

  • 나윤호
    • 기술사
    • /
    • 제4권15호
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Polyoxyethylene monooleate 및 oleyther계 유분산제의 제조와 Bunker B유의 분산효율에 미치는 영향 (Preparation of Oil dispersants using polyoxyethylene Monooleate and Oleyether and its Effect on dispersing efficiency to Bunker B Oil)

  • 염규설;강두환
    • 한국응용과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.59-67
    • /
    • 1995
  • Oil dispersants using polyoxyethylene monooleate, polyoxyethylene oleylether, and poly(oxypropylene-oxyethylene)glycol block copolymer were prepared, and oil dispersant efficiency was measured using vertical shaking flask method to 4 kinds of Bunker B oil with different physical properties by appling the prepared dispersants. Although the dispersant efficiency was differed according to the differences of physical properties of Bunker B oil, the dispersant prepared using polyoxyethylene oleylether was the most effective to disperse the oil into water. The impurities like surfur contained in sample oil have to be removed by filteration to obtain the correct degree of absorption using UV spectrophotometer.