• Title/Summary/Keyword: Bump design

Search Result 117, Processing Time 0.021 seconds

Design and analysis of disk bump to Improve unloading performance (언로드 성능향상을 위한 디스크 범프의 디자인 및 해석)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Kim, Ki-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.140-143
    • /
    • 2006
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance. The main issues of L/UL are no slider-disk contact and no media damage. To make sure L/UL stability, we consider many design parameters in L/UL systems. This paper is focused on disk design parameters through designing a disk bump in outer guard band(OGB). In the case of bump design on the disk, we create a bump by changing bump design parameters as like size and amplitude. From dynamic analysis, we choose optimal bump model with the highest flying height and the longest rising time. When a slider passes over a bump in dynamic system, the slider rise above bump according to bump shape. On the basis of this rising effect on the bump, we apply bump design to classical L/UL system having slider-disk contact possibility. This study is based on the simulation, we finally realize improved slider unloading performance by applying slider dynamic result on unload simulation.

  • PDF

Design and Experiment investigation of disk bump to improve unload performance in HDD (HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Park, Gyeong-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

Optimization of front Bump Steer for Improving Vehicle Handling Performances (차량의 조종 안정성 향상을 위한 전륜 범프 스터어 최적화)

  • 서권희;이윤기;박래석;박상서;윤희석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.

  • PDF

Design and Analysis of Disk Bump to Improve the Unloading Performance in HDD (HDD 의 언로딩 성능 개선을 위한 디스크 범프의 설계 및 해석)

  • Lee, Yong-Eun;Lee, Yong-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • In most hard disk drives that apply the ramp load/unload technology, the head is unloaded at the outer edge of the disk while the disk is rotating. During the unloading process, slider-disk contacts may occur by lift-off force and rebound of the slider. The main issue of this paper is to prevent the slider-disk contact by rebound, and we apply a disk bump to the unloading process. To do so, first, the ranges of bump dimension are determined. Second, the stability of each bump is checked by dynamic simulation. Finally, unload simulations are performed for stable bump designs. As a result of these steps, the effect of the bump design and the position for the unloading performance were investigated. As a consequence, we propose the optimal bump design to improve the unloading performance. Furthermore, we can identify to remove rebound contact by applying a bump on disk during the unloading process.

  • PDF

An Experimental Study on the Structural Dynanmic Coefficients of Self-Acting Compliant Foil Journal Bearings (범프 포일 베어링들의 동적 계수에 관한 실험적 연구)

  • Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments were conducted to determine the structural dynamic characteristics of bump foil bearing. The housing of the bearing on the journal was driven by two shakers which were used to simulate dynamic forces acting on the bump foil strips. Three different bump foils(Cu-coated bump, silicon bump, viscoelastic bump) are tested and the dynamic coefficients of three bump foils compared, based on the experimental measurements for a wide range of operating conditions. From the test results, the high damping coefficients of viscoelastic bump are achieved and the possibility of the super-bending-critical operation is suggested.

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

Analysis of Air Foil Bearing using Influence Coefficients of a Bump Foil (포일변형 영향계수를 이용한 공기포일베어링 해석)

  • Kim Young-Cheol;Lee Dong-Hyun;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents the influence coefficient method to predict the deflection of bump foil precisely in the sub-structure of AFB(air foil bearing). Heshmat has introduced the simple compliance model to calculate the deflection of bump foil. But this approach can not consider the deflection of bump foil at the edge of AFB, so elasto-hydrodynamic model is insufficient to analyze in case that the eccentricity ratio is greater than 1. Peng has used the average pressure and film thickness, but this approach is not also a realistic model. Influence coefficients of a bump is calculated by finite element method, and introduced in bump deflection equations of the performance analysis of air foil bearing. The effects of the influence coefficient on the bearing performance is discussed in detail for appropriate foil design.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

A Study on the Lift-off Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프 저어널 베어링의 부상 특성에 관한 연구)

  • 이남수;이용복;최동훈;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.236-242
    • /
    • 2001
  • In this paper the effect of bump compliance, load, and the number of pad on the lift-off speed is studied. When the load is greater and bump compliance lower, the shaft is lifted off at higher rotating speed. And when the load is applied near the center of pad, lift-off speed is lower. When the number of pad increases, the lift-off speed is higher. The lift-off characteristics can be used to lengthen the life time of the coating and design the rotating machinery supported by bump bearings.

  • PDF