• Title/Summary/Keyword: Bulk heterojunction solar cell

Search Result 38, Processing Time 0.031 seconds

High-Efficiency Polymer-Titanium Oxide Hybrid Solar Cells

  • Lee, Kwang-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.186-186
    • /
    • 2006
  • We report a new architecture for high efficiency polymer solar cells introducing a new concept of 'optical spacer' with new material. By implementing a novel solution-based titanium oxide ($TiO_{x}$) layer between the active layer and the electron collecting Al electrode, we invented a way to increase ${\sim}50\;%$ in power conversion efficiency compared to conventional polymer solar cells. Now the new devices exhibit ${\sim}6\;%$ power conversion efficiency, which is the highest value reported to date for a polymer based photovoltaic cell. The $TiO_{x}$ layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Nanoscale Double Interfacial Layers for Improved Photovoltaic Effect of Polymer Solar Cells (이중 나노 계면층을 적용한 고효율 고분자 태양 전지 소자 연구)

  • Lee, Young-In;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • We introduced nanoscale interfacial layers between the PV layer and the cathode in poly (3-hexylthiophene):methanofullerene bulk-heterojunction polymer photovoltaic (PV) cells. The nanoscale double interfacial layers were made of ultrathin poly (oxyethylenetridecylether) surfactant and low-work-function alloy-metal of Al:Li layers. It was found that the nanoscale interfacial layers increase the photovoltaic performance, i.e., increasing short-circuit current density and fill factor with improved device stability. For PV cells with the nanoscale double interfacial layers, an increase in power conversion efficiency of $4.18{\pm}0.24%$ was achieved, compared to that of the control devices ($3.89{\pm}0.08%$) without the double interfacial layers.

Interfacial Electronic Structures of Poly[N-9''-hepta-decanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and [6,6]-phenyl C60 Butyric Acid Methyl Ester

  • Lee, Jung-Han;Seo, Jung-Hwa;Schlaf, Rudy;Kim, Kyoung-Joong;Yi, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.277-277
    • /
    • 2012
  • PCDTBT (Poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) is an attractive material as a semiconducting polymer for organic thin film transistor (OTFT) and organic solar cell (OSC). High power conversion efficiency (~6%) under simulated AM 1.5G solar illumination of bulk-heterojunction solar cell with PCDTBT and [6,6]-phenyl C60 butyric acid methyl ester (PC61BM) blend was reported. In OSC, it is known that the band alignment at the interface between donor and acceptor is critical. Therefore, we studied the interfacial electronic structures of PCDTBT and PC61BM. The polymers are deposited by electro-spray on gold and In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We obtained the energy level alignment between two materials and the different interface formation was observed with different deposition order.

  • PDF

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Solution-processed Polymer Tandem Cells Using Nano Crystalline $TiO_2$ Interlayer ($TiO_2$ 나노 입자의 중간 전극을 이용한 직렬 적층형 유기 태양 전지)

  • Chung, Won-Suk;Ju, Byeong-Kwon;Ko, Min-Jae;Park, Nam-Gyu;Kim, Kyung-Kon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.444-444
    • /
    • 2008
  • For the polymer tandem cell, simple and advantaged solution-based method to electron transport intermediate layer is presented which are composed $TiO_2$ nanoparticles. Device were based on a regioregular Poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester($PC_{60}BM$) blend as a donor and acceptor bulk-heterojunction. For the middle electrode interlayer, the $TiO_2$ nanoparticles were well dispersed in ethanol solution and formed thin layer on the P3HT:PCBM charge separation layer by spin coating. The layer serves as the electron transport layer and divides the polymer tandem solar cell. The open-circuit voltage (Voc) for the polymer tandem solar cells was closed to the sum of those of individual cells.

  • PDF

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min;Kim, Dae-Kyun;Ryu, Taek-Hee;Jung, Eun-Hwan;Lansac, Yves;Jang, Yun-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1029-1036
    • /
    • 2012
  • Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Photovoltaic Effect of Polymer Solar Cells Doped with Sensitizing Dye (감광성 염료를 도핑한 고분자 태양 전지 소자 연구)

  • Yun, Soo Hong;Park, Jae Woo;Huh, Yoon Ho;Park, Byoungchoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.252-256
    • /
    • 2013
  • We introduced sensitizing dyes into the bulk-heterojunction (BHJ) photovoltaic (PV) layer of polymer solar cells (PSCs). The sensitizing dyes doped were Bis(tetra butyl ammonium) cis-dithio cyanato bis(2,2'-bipyridine-4-carboxylicacid-4'-carboxylate) ruthenium (II) (N719 dye) and the BHJ PV layer used was made of poly (3-hexylthiophene) (P3HT) and phenyl $C_{61}$-butyric acid methyl ester (PCBM). It was found that the N719 dyes increase the photovoltaic performance, i.e., increasing open-circuit voltage and short-circuit current density with improved fill factor. For the P3HT:PCBM PV cells doped with the N719 dyes (0.24 wt%), an increase in power conversion efficiency of 4.0% was achieved, compared to that of the control cells (3.6%) without the N719 dyes.