• Title/Summary/Keyword: Bulk handling system

Search Result 28, Processing Time 0.026 seconds

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Simulation-Based Design of Shear Mixer for Improving Mixing Performance (혼합효율 개선을 위한 Shear Mixer의 시뮬레이션 기반 형상 설계)

  • Kim, Tae-Young;Jeon, Gyu-Mok;Ock, Dae-Kyung;Park, Jong-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.107-116
    • /
    • 2017
  • When drilling operation is being performed, many physical and chemical changes are occurred near wellbore. To handle various changes of well condition and keep drilling process safe, additives of bulk, such as bentonite for increasing density of drilling mud, barite for increasing viscosity of drilling mud, polymer for chemical control, or surfactant, are added into drilling mud through a mud shear mixer. Because the achievement of the required material property through mud mixing system is essential to stabilize drilling system, it is of importance to analyze multi-phase flow during mud mixing process, which is directly related to increase mixing performance of the system and guarantee the safety of the whole drilling system. In this study, a series of liquid-solid flow simulation based on a computational fluid dynamics (CFD) are performed with comparing to solid concentration in experiment by Gilles et al. [2004] to understand the characteristics of liquid-solid mixing in a mud shear mixer. And then, the simulation-based design of shear mixer are carried out to improve mixing performance in a mud handling system.

Forecasting the Steel Cargo Volumes in Incheon Port using System Dynamics (System Dynamics를 활용한 인천항 철재화물 물동량 예측에 관한 연구)

  • Park, Sung-Il;Jung, Hyun-Jae;Jeon, Jun-Woo;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.2
    • /
    • pp.75-93
    • /
    • 2012
  • The steel cargoes as the core raw materials for the manufacturing industry have important roles for increasing the handling volume of the port. In particular, steel cargoes are fundamental to vitalize Port of Incheon because they have recognized as the primary key cargo items among the bulk cargoes. In this respect, the IPA(Incheon Port Authority) ambitiously developed the port complex facilities including dedicated terminals and its hinterland in northern part of Incheon. However, these complex area has suffered from low cargo handling records and has faced operational difficulties due to decreased net profits. In general, the import and export steel cargo volumes are sensitively fluctuated followed by internal and external economy index. There is a scant of research for forecasting the steel cargo volume in Incheon port which used in various economy index. To fill the research gap, the aim of this research is to predict the steel cargoes of Port of Incheon using the well established methodology i.e. System Dynamics. As a result, steel cargoes volume dealt with in Incheon port is forecasted from about 8 million tons to about 10 million tons during simulation duration (2011-2020). The Mean Absolute Percentage Error (MAPE) is measured as 0.0013 which verifies the model's accuracy.

Development of an Automatic PCR System Combined with Magnetic Bead-based Viral RNA Concentration and Extraction

  • MinJi Choi;Won Chang Cho;Seung Wook Chung;Daehong Kim;Il-Hoon Cho
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.363-370
    • /
    • 2023
  • Human respiratory viral infections such as COVID-19 are highly contagious, so continuous management of airborne viruses is essential. In particular, indoor air monitoring is necessary because the risk of infection increases in poorly ventilated indoors. However, the current method of detecting airborne viruses requires a lot of time from sample collection to confirmation of results. In this study, we proposed a system that can monitor airborne viruses in real time to solve the deficiency of the present method. Air samples were collected in liquid form through a bio sampler, in which case the virus is present in low concentrations. To detect viruses from low-concentration samples, viral RNA was concentrated and extracted using silica-magnetic beads. RNA binds to silica under certain conditions, and by repeating this binding reaction, bulk samples collected from the air can be concentrated. After concentration and extraction, viral RNA is specifically detected through real-time qPCR (quantitative polymerase chain reaction). In addition, based on liquid handling technology, we have developed an automatic machine that automatically performs the entire testing process and can be easily used even by non-experts. To evaluate the system, we performed air sample collection and automated testing using bacteriophage MS2 as a model virus. As a result, the air-collected samples concentrated by 45 times then initial volume, and the detection sensitivity of PCR also confirmed a corresponding improvement.

Estimation of Unit Cost by Handling Cargo in Busan New Port DistriPark (부산항 신항 배후단지 취급화물별 비용 원단위 추정)

  • Kim, Yun-Hoe;Choung, Sang-Won;Kim, Yul-Seong
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.550-556
    • /
    • 2020
  • Over the past years, the role of ports in the global network of supply chains has becoming increasingly important, not merely as a physical location for loading and unloading goods, but also as an essential center of economic activity where additional value is added to cargo. Due to the overall growing importance of ports, each country has chosen to adopt hub growth as a primary economic strategy. Northeast Asia in particular, due to its high population density, experiences intense competition between its ports. Busan's port, as a result, has used the establishment of Distripark in order to attract high and stable trade volume, and compete more effectively with other ports in the region. This study estimates the unit cost of the logistic process for the all principal cargos handled at Busan New Port, with the findings revealing that unit cost increases gradually starting with chemical products, LME bulk goods, automobile parts, LME containers, general cargoes, and LME inland transportation goods coming in last. Future research will look more closely at all all categories of cargo handled in the Distrpark of Busan New Port, thereby enabling us to better understand the value created by the port, and how to best implement effective trade volume-attraction strategy.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

The Effects of Design Thinking-based Collaborative Workshop on Creative Problem Solving: Focused on the development case of SAP Smart Bulk Bin Monitoring System (디자인 사고 기반의 협력적 워크숍이 창의적 문제해결에 미치는 영향 : SAP 스마트 벌크빈 모니터링 시스템 개발 사례를 중심으로)

  • Jeon, Young-Ok;Choi, Hye-Jeong
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.429-436
    • /
    • 2017
  • A design thinking-based collaborative workshop in which various stakeholders in the milk processing industry circulation ecosystem participated shows a new problem innovation paradigm that encourages the spread of practical prototyping culture. in the expression of empathy and collective intelligence among members on facing issues, the conversion of collaboration and communication methods, the business handling of the organization based on the design work method as 'creativity mechanism'. In this workshop, which was promoted in three stages of 'approach to problems', 're-definition of problems', and 'experience-based future vision design', participants themselves redefine real problems in terms of the accuracy of feed orders between feed suppliers and livestock farmers, ordering of feeds on time, cost reduction of feed supply and present new alternatives and expanded business areas. The results suggested in this workshop suggest the usefulness of design thinking in business innovation in that they presented how to approach the problem and a creative thinking system to find its solution to direct and indirect stakeholders of the industry as well as the improvement of supply and demand rate of livestock feed and quality.