• 제목/요약/키워드: Bulk doping

검색결과 105건 처리시간 0.026초

유기태양전지와 유기발광다이오드에 적용 In-Mo-O 투명 전극의 특성 연구

  • 신용희;나석인;김장주;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.535-536
    • /
    • 2013
  • 본 연구에서는 DC/RF co-sputtering공법을 통해 제작한 In-Mo-O 투명 Mo doping 농도 및 열처리 온도에 따른 전기적, 광학적, 구조적 특성을 분석하고, 최적화된 In-Mo-O 투명전극을 유기태양전지(OPVs)와 유기발광다이오드(OLED)에 적용하여 그 가능성을 평가하였다. Mo doping 농도는 co-sputtering 공정 중 MoO3에 인가되는 radio-frequency (RF) power를 변화시켜 조절되었으며, 투명전극의 광학적 특성 및 전기적 특성 향상을 위해 성막 공정 후 급속 열처리 공정을 온도 별로 진행하였다. In-Mo-O 투명 전극은 Mo 도핑 농도에 영향을 받음을 확인할 수 있었고, 최적화된 Mo doping 파워에서 성막한 In-Mo-O 박막은 급속 열처리 공정 후 면저항 24.57 Ohm/square, 투과도 81.57% (400~1,200 nm wavelength)를 나타내었다. Bulk hetero-junction 기반의 고효율 유기태양전지와 유기발광다이오드 적용하기 위해 본 연구에서 제작된 IMO 투명전극의 구조적 특성, 결정성 및 표면특성은 x-ray diffraction (XRD), atomic force microscopy(AFM), field effect scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM) 분석을 통해 진행하였다. In-Mo-O 투명 전극상에 제작된 OLEDs와 OPV는 reference ITO 전극에 제작된 OLEDs/OPV와 비교할 때 유사하거나 향상된 특성을 나타내었으며 이는 In-Mo-O 박막이 OLED/OPV용 투명 전극으로 적용이 가능함을 말해준다.

  • PDF

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

변형 힘을 받는 p형 $Si_{1-x}Ge_x$의 이동도 연구 (Study of the Mobility for Strained p-type $Si_{1-x}Ge_x$ Alloys)

  • 전상국
    • 한국전기전자재료학회논문지
    • /
    • 제11권3호
    • /
    • pp.181-187
    • /
    • 1998
  • The ionization energy and degree of ionization for p-type $Si_{1-x}Ge_x$ with boron doping are calculated taking into account the screening and broadening effects. The drift and Hall mobilities are then calculated using the relaxation time approximation and compared with the previously reported measurement data for relaxed and strained $Si_{1-x}Ge_x$ alloys to estimate the alloy scattering potential. From a fit, the alloy scattering potential is found to be 0.5 eV. The in-plane drift mobility for p-type strained $Si_{1-x}Ge_x$ grown on (001) Si substrate is approximately 1+$10x^2$ times higher than that for bulk Si in the high doping range.

  • PDF

이중 $\delta$ 도핑층을 이용한 Si 채널 MESFET의 성능 향상에 관한 연구 (Performance enhancement of Si channel MESFET using double $\delta$-doped layers)

  • 이찬호;김동명
    • 전자공학회논문지D
    • /
    • 제34D권12호
    • /
    • pp.69-75
    • /
    • 1997
  • A Si-channle MESFET using .delta.-doped layers was designed and the considerable enhancement of the current driving capability of the device was observed by simulation. The channel consists of double .delta.-doped layers separated by a low-doped spacer. Cariers are spilt from the .delta.-doped layers and are accumulated in the spacer. The saturation current is enhanced by the contribution of the carriers in the spacer. Among the design parameters that affect the peformance of the device, the thickness of the spacer and the ratio of the doping concentrations of the two .delta.-doped layers were studied. The spacer thickenss of 300~500.angs. and the doping ratio of 3~4 were shown to be the optimized values. The saturation current was observed to be increased by 75% compared with a bulk-channel MESFET. The performances of transconductance, output resistance, and subthreshold swing were also enhanced.

  • PDF

MnO2가 첨가된 PSN-PNN-PT 세라믹스의 유전 및 압전특성 (Dielectric and Piezoelectric Properties of MnO2-doped PSN-PNN-PT Ceramics)

  • 이종덕
    • 센서학회지
    • /
    • 제13권2호
    • /
    • pp.152-156
    • /
    • 2004
  • The dielectric and piezoelectric properties of 0.36Pb($Sc_{1/2}Nb_{1/2}$)$O_{3}$-0.25Pb($Ni_{1/3}Nb_{2/3}$)$O_{3}$-0.39Pb$TiO_{3}$ (hereafter PSNNT) at the morphotropic phase boundary (MPB) composition were investigated with $0{\sim}2.5$ mot% $MnO_{2}$ doping. Bulk density, dielectric loss and tetragonality of crystal structure were all improved with increasing $MnO_{2}$ additive content. With increasing $MnO_{2}$ additive content, the electromechanical coupling factor and quality factor were also increased: Electromechanical coupling $k_{p}$ and quality factor $Q_{m}$ at 2.0 mol% $MnO_{2}$ doping with were showed highest values of 55.6 % and 252, respectively.

Novel Devices for Sub-100 nm CMOS Technology

  • Lee, Jong-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.180-183
    • /
    • 2000
  • Beginning with a brief introduction on near 100 nm or below CMOS devices, this paper addresses novel devices for future sub-100 nm CMOS. First, key issues such as gate materials, gate dielectric, source/drain, and channel in Si bulk CMOS devices are considered. CMOS devices with different channel doping and structure are introduced by explaining a figure of merit. Finally, novel device structures such as SOI, SiGe, and double-gate devices will be discussed for possible candidates for sub-100 nm CMOS.

  • PDF

극한 환경용 반도체 기술 동향 (Technical Trends of Semiconductors for Harsh Environments)

  • 장우진;문재경;이형석;임종원;백용순
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

수소 감지 성능 향상을 위한 Pd/TiO2 분말에서의 Al 도핑 효과 (Al Doping Effect of Pd/TiO2 for Improved Hydrogen Detection)

  • 이영안;서형탁
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.207-210
    • /
    • 2014
  • $TiO_2$ oxide semiconductor is being widely studied in various applications such as photocatalyst and photosensor. Pd/$TiO_2$ gas sensor is mainly used to detect $H_2$, CO and ethanol. This study focus on increasing hydrogen detection ability of Pd/$TiO_2$ in room temperature through Al-doping. Pd/$TiO_2$ was fabricated by the hydrothermal method. Contacting to Aluminum (Al) foil led to Al doping effect in Pd/$TiO_2$ by thermal diffusion and enhanced hydrogen sensing response. $TiO_2$ nanoparticles were sized at ~30 nm of diameter from scanning electron microscope (SEM) and maintained anatase crystal structure after Al doping from X-ray diffraction analysis. Presence of Al in $TiO_2$ was confirmed by X-ray photoelectron spectroscopy at 73 eV. SEM-energy dispersive spectroscopy measurement also confirmed 2 wt% Al in Pd/$TiO_2$ bulk. The gas sensing test was performed with $O_2$, $N_2$ and $H_2$ gas ambient. Pd/Al-doped $TiO_2$ did not response $O_2$ and $N_2$ gas in vacuum except $H_2$. Finally, the normalized resistance ratio ($R_{H2on}/R_{H2off}$) of Pd/Al-doped $TiO_2$ increases about 80% compared to Pd/$TiO_2$.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • 신새영;문연건;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성 (Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3)

  • 홍연우;신효순;여동훈;김종희;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.