• Title/Summary/Keyword: Bulk doping

검색결과 105건 처리시간 0.03초

Research for Controlled Thermal Conductivity of p-Type Skutterudite Materials (P-type Skutterudite 열전소재의 열전도도 제어 연구)

  • Son, Geon Sik;Choi, Soon Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권11호
    • /
    • pp.671-675
    • /
    • 2016
  • Skutterudite materials show PGEC (phonon glass electron crystal) characteristics which is an optimal strategy for designing high performance thermoelectric materials. Now two methods are in parallel to control thermal conductivity of skutterudites, a rattler-atoms doping method and a process for nanostructured bulk materials. Amount of rattler atoms in p-type skutterudite are depends on a Fe/Co ratio of matrix, and the optimal Fe/Co ratio has been reported about from 3:1 to 3.5:0.5 in $R(Fe,Co)_4Sb_{12}$ structure. In this paper, our discussion for rattler doping research was concentrated on double-rattler systems and DD-doped systems in p-type skutterudites. A melt spinning precess combined with high energy ball milling were suggested as a strategy for nanostructured bulk materials with PGEC (phonon glass electron crystal) characteristics in p-type skutterudites.

Effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulks (Nd-Ba-Cu-O 벌크 초전도체의 초전도 특성에 미치는 Ca 첨가계의 영향)

  • 이훈배;위성훈;유상임
    • Progress in Superconductivity and Cryogenics
    • /
    • 제4권1호
    • /
    • pp.21-25
    • /
    • 2002
  • The effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulk superconductors, fabricated by the oxygen-controlled melt growth process, has been systematically investigated. Various c-axis textured bulk samples were grown using precursors with the nominal compositions of $Nd_{1.8-x}Ca_{x]Ba_{2.4}Cu_{3.4}O_{y}$ (x= 0.00, 0.02, 0.05, 0.10, 0.15) in a reduced oxygen atmosphere of 1%O$_2$ in Ar. Magnetization measurements revealed that the critical temperatures(Tc) were almost linearly depressed from 95K to 86K with increasing the Ca dopant from x : 0.0 to 0.15, respectively, and thus critical current densities(Jc) at 77K and for H//c-axis of specimens were gradually degraded with increasing x. Compositional analyses revealed that although the amounts of the Ca dopant both in $NdBa_2Cu_2O_y(Nd123) and Nd_4Ba_2Cu_2O_{10}(Nd422)$,/TEX> were increased with increasing x, only less than half of the initial Ca compositions were detected in melt-grown Ca-doped Nd-Ba-Cu-O bulk crystals. The supression of Tc is attributed to an increased Nd substitution for the Ba site in the Nd123 superconducting matrix with increasing the amount of the Ca dopant.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • 제52권5호
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Binary Doping of N-B and N-P into Graphene and Graphene Nanoribbons: Structural, Electronic, and Transport properties

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.647-647
    • /
    • 2013
  • We apply a density functional theory (DFT) and DFT-based non-equilibrium Green's function approach to study the structures, energetics and charge transport characteristics of nitrogen-doped graphene and graphene nanoribbons (GNRs) with additional doping of phosphorus or boron atoms. Considering graphitic, pyridinic, and porphrin-like N doping sites and increasing N-doping concentration, we analyze the structures of N-P and N-B doped graphene and particularly focus on how they affect the charge transport along the lateral direction. For the GNRs, we also consider the differences between defects formed at the edge and bulk regions. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Enhanced superconducting properties of MgB2 by doping the carbon quantum dots

  • K.C., Chung;S.H., Jang;Y.S., Oh;S.H., Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • 제24권4호
    • /
    • pp.55-58
    • /
    • 2022
  • Carbon-based doping to MgB2 superconductor is the simplest approach to enhance the critical current densities under magnetic fields. Carbon quantum dots is synthesized in this work as a carbon provider to MgB2 superconductors. Polyvinyl Pyrrolidone is pyrolyzed and dispersed in dimethylfomamide solvent as a dopant to the mixture of Mg and B powders. Doped MgB2 bulk samples clearly show the decrease of a-axis lattice constant, grain refinements, and broadening of FWHM of diffraction peaks compared to un-doped MgB2 possibly due to the carbon substitution and/or boron vacancy at the boron site in MgB2 lattice. Also, high-field Jc for the doped MgB2 is enhanced significantly with the crossover about 3 T at 5 & 20 K when increasing the doping of carbon quantum dots.

Design Consideration of Body-Tied FinFETs (${\Omega}$ MOSFETs) Implemented on Bulk Si Wafers

  • Han, Kyoung-Rok;Choi, Byung-Gil;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권1호
    • /
    • pp.12-17
    • /
    • 2004
  • The body-tied FinFETs (bulk FinFETs) implemented on bulk Si substrate were characterized through 3-dimensional device simulation. By controlling the doping profile along the vertical fin body, the bulk FinFETs can be scaled down to sub-30 nm. Device characteristics with the body shape were also shown. At a contact resistivity of $1{\times}10^{-7}\;{\Omega}\;cm^2$, the device with side metal contact of fin source/drain showed higher drain current by about two. The C-V results were also shown for the first time.

A Study on the Superconducting prperties of Bi system bulk (Bi system bulk의 superconducting properties)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권2호
    • /
    • pp.352-354
    • /
    • 2010
  • The effects of Au addition on the structure and the superconducting properties of Bi system bulk have been investigated. Au exists in the metalic form in above materials. It does not affect the formation and structure of the BiSrCaCuO(2223) phase. The superconducting transition temperature Tc does not change for $Bi_{1.7}Pb_{0.3}Sr_2Ca_2Cu_3O$ composite However Au doping can make the grains smaller. Metallic Au can make gathers on the grains boundary and lead to the increment of critical transport current density. The current density of $Bi_{1.7}Pb_{0.3}Sr_2Ca_2Cu_3Au_{0.5}O$ was 1000A/$cm^2$ at liquid nitrogen temperature.

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)O3 Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)O3 세라믹스와 박막의 상형성 거동)

  • Kim, Kyung-Man;Lee, Hee-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제23권12호
    • /
    • pp.949-955
    • /
    • 2010
  • Nd and Ti co-doped bismuth ferrite $(Bi_{1-x}Nd_x)(Fe_{1-y}Ti_y)O_3$ (x, y = 0, 0.05, 0.1, 0.2) ceramics and thin films were synthesized through the conventional mixed-oxide process and pulsed laser deposition (PLD), respectively. Nd and Ti co-doping effect was examined with emphasis on how these impurities affect phase formation behavior as there could be the improvement in leakage current problems often associated with multiferroic $BiFeO_3$ (BFO) thin films. The lattice constants of BFO ceramics decreased with Nd doping concentration up to 10mol%, while they further decreased with Nd and Ti co-doping to about 20%. BFO thin films obtained by the PLD process revealed random polycrystalline structure. Similar to bulk BFO ceramic, Nd and Ti co-doping effectively suppressed the formation of unwanted secondary phase and thus stabilized the perovskite phase in BFO thin films.

Molecular beam epitaxial growth and characterization of Sb .delta.-doped Si layers using substrate temperature modulation technique (저온 변조 성장 기법을 이용하여 Sb가 ${\delta}$ 도핑된 다층 구조의 Si 분자선 박막 성장과 특성 분석)

  • Le, Chan ho
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • 제32A권12호
    • /
    • pp.142-148
    • /
    • 1995
  • Sb ${\delta}$-doped Si layers were grown by Si MBE (Molecular Beam Epitaxy) system using substrate temperature modulation technique. The Si substrate temperatures were modulated between 350$^{\circ}C$ and 600$^{\circ}C$. The doping profile was as narrow as 41$\AA$ and the doping concentration of up to 3.5${\times}10^{20}cm^{3}$ was obtained. The film quality was as good as bulk material as verified by RHEED (Reflected High Energy Electron Diffraction), SRP (Spreading Resistance Profiling) and Hall measurement. Since the film quality is not degraded after the growth a Sb ${\delta}$-doped Si layer, the ${\delta}$-doped layers can be repeated as many times as we want. The doping technique is useful for many Si devices including small scale devices and those which utilize quantum mechanical effects.

  • PDF

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF