• 제목/요약/키워드: Bulk curing process

검색결과 12건 처리시간 0.019초

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

광중합 콤포짓트레진의 수복형태 및 방법에 관한 삼차원 유한요소분석법적 비교 연구 (A COMPARATIVE STUDY ON THE COMPOSITE RESTORATION DESIGN AND PLACEMENT METHODS USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS)

  • 이정택;임순호;장익태
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.133-149
    • /
    • 1998
  • Clinical application of composite resin recently draw great concerns in dentistry. Especially due to advantages such as esthetics, adhesiveness, simple clinical procedures, various shapes and kinds of composite resins are widely being applied to prosthodontics, conservative dentistry, and orthodontics. But, clinical problems attributable to the polymerization shrinkage of composite resin have been proposed, and we have to regard clinical problems such as secondary caries, loss of restoration, fracture of the surrounding tooth structure, marginal discoloration, and tooth sensitivity, and many portions are remained to be overcome. Therefore, this study attempts to analyze stress distribution between resin and tooth structure which is generated during polymerization shrinkage of composite resin using three dimensional finite element method. Three dimensional finite element models with conventional box-shape cavity and erosion/abrasion type V-shape lesion cavity in upper central incisor were developed. These cavities were filled with four different types of placement techniques. (bulk filling, horizontal increment filling, oblique occlusal increment filling, oblique gingival increment filling) The stresses generated by polymerization shrinkage of composite resin were calculated. The results analyzed with three dimensional finite element method were as follows : 1. The increment filling technique showed the highest maximum normal stress in both conventional box-shape and V-shape cavities and showed a tendency to decrease after complete polymerization. 2. The bulk filling technique resulted in increased stresses during the curing process in both conventional box-shape and V-shape cavities and the highest maximum normal stress occurred after complete polymerization. 3. The bulk filling resulted in the lowest maximum normal stress in both box-shape and V-shape cavities 4. Regardless of placement method, in conventional box-shape cavity, the maximum normal stress increased in dentin floor, enamel, dentin sequence and in V-shape cavity, the maximum normal stress increased in enamel, dentin sequence.

  • PDF