• Title/Summary/Keyword: Bulk Amorphous Metal

Search Result 26, Processing Time 0.023 seconds

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Inorganic Printable Materials for Thin-Film Transistors: Conductor and Semiconductor

  • Jeong, Sun-Ho;Song, Hae-Chon;Lee, Byung-Seok;Lee, Ji-Yoon;Choi, Young-Min;Ryu, Beyong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.18.2-18.2
    • /
    • 2010
  • For the past a few years, we have intensively researched the printable inorganic conductors and ZnO-based amorphous oxide semiconductors (AOSs) for thin-film transistors. For printable conductor materials, we have focused on the aqueous Ag and Cu ink which possess a variety of advantages, comparing with the conventional metal inks based on organic solvent system. The aqueous Ag ink was designed to achieve the long-term dispersion stability using a specific polymer which can act as a dispersant and capping agent, and the aqueous Cu ink was carefully formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. For printable ZnO-based AOSs, we have researched the noble way to resolve the critical problem, a high processing-temperature above $400^{\circ}C$, and recently discovered that Ga doping in ZnO-based AOSs promotes the formation of oxide lattice structures with oxygen vacancies at low annealing-temperatures, which is essential for acceptable thin-film transistor performance. The mobility dependence on annealing temperature and AOS composition was analyzed, and the chemical role of Ga are clarified, as are requirements for solution-processed, low-temperature annealed AOSs.

  • PDF

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF