• Title/Summary/Keyword: Building maintenance management

Search Result 543, Processing Time 0.03 seconds

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.

Estimation of Travel Time in Natural River and Dam Outflow Conditions Considering Rainfall Conditions and Soil Moisture Accounting (강우조건과 토양함수상태를 고려한 자연하천과 댐 방류량 조건에서의 도달시간 산정)

  • Kim, Dong Phil;Kim, Kyoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • Determination of the time parameters such as the travel time in the design flood is very important. The travel time is mainly used for flood and river management, and the travel time of non flood season is used for maintenance flow and management of the river. Estimation of travel time for natural rivers is mainly based on the geomorphological factors of the basin. In addition to the topographical factors, the travel time is calculated by considering the factors of the runoff curve, velocity and rainfall intensity. However, there is no study on the estimation of travel time considering both the rainfall condition and the soil moisture accounting by the frequency period. Therefore, the travel time calculation is divided into the case of setting the Hwanggang Dam and the Imjin bridge water level station of Imjin river as the natural river considering rainfall condition by the frequency period and the soil moisture accounting, and the case of traveling the Imjin bridge water level station according to the condition of outflow of the Hwanggang Dam. For the sections set as natural rivers, the results were verified by comparing with the newly developed travel time calculation method. Based on the results, the travel times of the Hwanggang Dam outflow conditions were calculated. The time to travel in this study can be secured flood control of the Imjin river basin and time to prepare for danger when outflowing the the Hwanggang Dam.

A Comparative Study on the Legal System of Building a Rooftop Gardening between Korea and China (한국과 중국의 옥상녹화 제도 비교연구)

  • Zhao, Hong-Xia;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • This study focused on the regulations and support system of green rooftop landscaping between Korea and China. Our research found out regulations and support system to review the supplement point to understand the present state of green rooftop landscaping in the two countries. We aimed to provide basic legal information for the development of green rooftop landscaping regulations. Also, a management plan guide and after-evaluation guide were suggested. First, roof load safety is the foremost factor for the structure of green rooftop landscaping. It includes not only considering the weight of construction materials, but also accurately calculating weight of rain, snow and the rooftop's capacity for people when the rooftop is designed. Second, the appropriate waterproof and root material should be selected basing on climatic conditions. Third, a maintenance and management plan needs to be established to regularly check the plant, facilities, soil and to maintain them. Fourth, the criteria of quality inspection are waterproof and root resistant material, and the growth and development of plants. Waterproof and root resistant materials are a very important part of rooftop greening, so they must be strictly inspected after construction. Fifth, the support system of rooftop greening should be continuously improved. The choice of the object and the amount of support should be strictly stipulated so that the construction of rooftop is promoted when volunteers do rooftop greening.

Multi-family Housing Complex Breakdown Structure for Decision Making on Rehabilitation (노후 공동주택 개선여부 의사결정을 위한 공동주택 분류체계 개발)

  • Hong, Tae-Hoon;Kim, Hyun-Joong;Koo, Choong-Wan;Park, Sung-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.101-109
    • /
    • 2011
  • As climate change is becoming the main issue, various efforts are focused on saving building energy consumption both at home and abroad. In particular, it is very important to save energy by maintenance, repair and rehabilitation of existing multi-family housing complex, because energy consumption in residential buildings is not only forming a great part of gross energy consumption in Korea but the number of deteriorated complexes is also sharply increasing. However, energy saving is not considered as a main factor in decision making on rehabilitation project. Also, any supporting tool is not appropriately prepared in existing process. As the first step for development of decision support system on rehabilitation, this paper developed a breakdown structure, which makes clusters of multi-family housing complexes. Decision tree, one of data mining methods, was used to make clusters based on the characteristics and energy consumption data of multi-family housing complexes. Energy saving and CO2 reduction will be maximized by considering energy consumption during rehabilitation process of multi-family housing complex, based on these results and following research.

A Comparative Study on the Life Cycle Cost of Wall Type Apartment and Beam-Column Structural Apartment (생애주기비용 분석을 통한 벽식 구조 공동주택과 장수명 공동주택의 경제성 비교 연구)

  • Lee, Jeehee;Kim, Kyuree;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.35-43
    • /
    • 2014
  • Ministry of Land, Infrastructure and Transport (MOLIT) promote long-life housing to reduce social costs generated by poorly considered rebuilding and extend the life-span of housing. Long-life housing has advantages of durability, floor plan variability, efficient maintenance and ease of remodeling because it is a beam-column structure building. However, long-life housing requires somewhat higher initial construction cost than wall type apartments. It makes increase of long-life housing more difficult. In this study, we compare between wall-type apartment and beam-column structure apartment from Life-Cycle Cost's viewpoint. As a result of the study, long-life housing incurs 18% higher initial cost than wall type apartment, but is 7% more economical than wall type apartment in terms of Life Cycle Cost. Therefore, it is shown that long-life housing could be a beneficial alternative to traditional wall type apartments.

A Proposal on the Consulting Model for Efficient Construction of Material Handling Automation System : Focused on K Company's Case (물류자동화 시스템의 효율적 구축을 위한 컨설팅 방법론 제안 : K기업의 사례를 중심으로)

  • Ko, J.H.;Cho, J.H.;Oh, H.S.;Shim, S.C.;Ryu, J.H.;Lee, S.J.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.202-211
    • /
    • 2015
  • Companies build the factory automation system to improve management effectiveness and productivity as prime strategies for sustainable growth. But most companies undergo various trials and errors while carrying out the project without elaborate preparation stage for factory automation. In this study, we tried to verify what factors are critical to effectively building distribution automation system, which is a branch of factory automation system. A consulting model for setting up a Material Handling Automation System by utilizing the Stage-Gate Process, which is product development process was studied. 29 material handling automation projects carried out between the year 1990 to 2013 at K-Company were selected. Interviews with the project managers, operators and maintenance personnels, various records and current status of the projects were used as data for structural equations based on the Milan consulting model and existing researches of factory automation, CIM for material handling automation. Creating effective basis of production, material handling system and energy saving system with expert review, when preparing a material handling automation project, help promote the project planning thus contributing to the performance of the resulting system, which appears though rather weakly in our data. Also the effect of material handling automation can be enhanced through sufficient and effective links to the relevant environments such as production logistics management and automated warehouses. More detailed planning characteristics of project promotion or some time-series data of effective Material Handling Automation System could enhace furthur studies. We propose a consulting model for setting up an efficient material handling automation system.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

A Study on the Right Direction of Green Standard for Energy and Environmental Design(G-SEED) from the Perspective of Landscape Architecture (조경관점의 녹색건축 인증기준에 대한 방향 정립)

  • Cha, Uk Jin;Nam, Jung Chil;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.45-56
    • /
    • 2016
  • In this study, an analysis has been conducted on the evaluation criteria of current G-SEED(Green Standard for Energy and Environmental Design) and on the 78 buildings, certified by G-SEED, for 3 years from November, 2012 to November, 2015. Based on the results of this analysis, four issues are driven and proposed hereinafter. Issue 1 : Nowadays, the psychological proportion of landscape architecture in building is getting greater than ever so that it shows reliable reduction of carbon dioxide. Therefore, so far as the eight kinds of buildings are concerned, the evaluation items of G-SEED must include those of landscape architecture mandatorily through its enlargement. Issue 2 : It is undesirable factor that inhibits precise evaluation on landscaping area to let other areas appraise landscape architecture because it requires outstanding professionalism. So, G-SEED should not only ensure landscaping professionalism for the correct evaluation but also let landscape area participate in assessing other areas. Issue 3 : Many previous researches turned out that landscape planting technique has excellent effect on saving energy and reducing temperature of buildings. Thus, landscape planting technique of landscape area is required to be one of the evaluation items of energy sector. Issue 4 : Tree management also has to be newly included as one of the evaluation factor for the maintenance relating to the landscape architecture. G-SEED, enacted and enforced by the Green Building Creation Support Act in 2013, surely is effective system to reduce carbon dioxide in buildings. This is a special Act in its nature that is superior to Construction Law and must be observed by all means to construct buildings. Under the umbrella of this legal system, various of researches and products are contributing to creating new jobs in construction area. However, it is a well-known fact that landscape architecture area has shown less interest on this Act than that of construction area. In conclusion, it is necessary that landscape industry should conduct continuous researches on G-SEED and pay more attention to the Act enough to harvest related products and enlarge its work area.

A Study on the Estimation Method of the Repair Rates in Finishing Materials of Domestic Office Buildings (국내 업무시설 건축 마감재의 수선율 산정 방안에 관한 연구)

  • Kim, Sun-Nam;Yoo, Hyun-Seok;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2015
  • Business facilities among domestic architectures have rapidly been constructed along with domestic economic development. It is an important facility taking the second largest proportion next to apartment buildings among current 31 building types of fire department classification of 2012 year for urban architectures. The expected service life of business facilities is 15 years, but 70% of those in urban areas have surpassed the 15 year service life as of the present 2014. Thus, the demand for urgent rehabilitation of such facilities is constantly increasing due to the aging and performance deterioration of the facilities'main finishing materials. Especially, the business facilities are being used for the lease of company office or private office, and such problems as aging and performance deterioration of the facilities could cause less competitive edge for leasing and real estate value depreciation for the O&M (Operation & Management) agent and the owner, respectively. Therefore, an effective planned rehabilitation as a preventive measure according to the standardized repair rate by the number of years after the construction is in need in order to prevent the aging and performance deterioration of the facilities(La et al. 2001). Nonetheless, domestic repair/rehabilitation standards based on the repair rate are mainly limited to apartment buildings and pubic institutions, resulting in impractical application of such standards to business facilities. It has been investigated and analyzed that annual repair rate data for each finishing material are required for examination of the applicability of the repair rate standard for the purpose of establishment of a repair plan. Hence, this study aimed at developing a repair rate computation model for finishing materials of the facilities and verifying the appropriateness of the annual repair rate for each finishing material through a case study after collecting and analyzing the repair history data of six business facilities. The results of this study are expected to contribute to the planning and implementation of more efficient repair/rehabilitation budget by preventing the waste of unpredicted repair cost and opportunity cost for the sake of the business facilities' owners and O&M agents.