• Title/Summary/Keyword: Building energy simulation program

Search Result 142, Processing Time 0.023 seconds

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Study on Evaluation of Energy Efficiency Rating of the Buildings (건축물의 에너지효율등급 평가에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • Since 2010, enhancement of the building energy efficiency and certification system and public office building should have been acquiring the first grade of Building Energy Efficiency. The Building Energy Efficiency Rating evaluation tool and Dynamic Analysis Energy simulation program for Building Energy Efficiency are widely used. The suitability to those programs have been discussed as a variety of programs have been used accordingly. In this study, evaluated the characteristic of Building Energy Efficiency Rating tool(ECO2) of the business building. At a result, the variables on the Weather Data, building Profile and building Load property in hourly between those Building Energy Efficiency evaluation tools have different.

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

A Case Study on the Building Energy Savings through HVAC System Optimization Process (공조시스뎀 최적화를 통한 건물에너지 절감사례 연구)

  • Huh Jung-Ho;Kwon Han-Sol;Han Soo-Gon;Ihm Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.426-433
    • /
    • 2006
  • The requirements for the optimal building system design is numerous. However, most system designers do not take care of various design strategies. They often argue that the proper simulation tools are not existed to solve the implicated design requirements and the time to consider many alternatives of building systems are insufficient. The aim of this study is to develop the optimization interface program that considers various system design variables and eventually find both the optimal values of annual energy use and cost. Therefore, Doe2Opt is developed to easily perform simulation-optimization process based on DOE2 and GenOpt, and minimizes energy cost of small-to-medium sized building for 6.7% and that of large sized building for 3% with optimizing several HVAC system variables.

Development of a Energy Demand Estimator for Community Energy Systems (건물 단지에 대한 에너지 수요 예측 데이터베이스 응용 프로그램 개발)

  • Chung, Mo;Park, Hwa-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.37-44
    • /
    • 2009
  • The field-surveyed and measured energy consumption data is processed to develop building energy demand models for heating, hot water, cooling, and electricity. The load models are systematically organized as a database and hourly loads for a span of year (8760 hours) are generated by the program. Rased on those models a Microsoft Access application program is developed to calculate energy demands for a Community Energy System (CES) composed of 17 types of buildings. User-friendly interfaces are provided to assist non-expert end users and necessary tools to link the calculation results to subsequent coagulations such as operation simulation or economic assessment.

Performance Assessment of Building Envelopes I: Double Skin Facade (외피 친환경 성능평가 I: 이중외피)

  • Kim, Deuk-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.77-82
    • /
    • 2009
  • Many countries have been interested in sustainable development of buildings for environmental preservation. Thus it is significant to assess building envelopes in terms of $CO_2$ emissions owing to Kyoto Protocol. In this paper, a Double Skin Facade(DSF) installed in a general office building was assessed by $CO_2$ emissions(one of the performance-based assessment). To predict $CO_2$ emissions caused by the building energy consumption, the dynamic simulation program(Energy Plus) and $CO_2$ emission factor was used. Because DSF has various airflow regimes, pre-simulation runs were conducted to decide proximate optimal airflow regimes depending on seasonal variation. It is shown that the DSF can achieve 17.1-36.5% of annual energy savings.

  • PDF

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

Level of Detail (LOD) for Building Energy Conservation Measures (ECMs) (건물 에너지 절감조치의 시뮬레이션 모델링 상세수준)

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.69-80
    • /
    • 2015
  • Purpose: Since most simulation programs take the interface that lists up all the input variables representing all the functionalities, users must know where design variables of an Energy Conservation Measure (ECM) are located and also know what values are appropriate. This is why practitioner designers feel frustrated when they attempt to use simulation. The final objective of this study is to provide a building energy modeling guideline for practitioners in various fields such as architectural design and MEP. Method: As the first step of the modeling guideline, this study provides the Level of Detail (LOD) for simulation modeling of primary ECMs considering the design information available in each design phase. It is prepared by literature review, simulation functionality investigation, and field experts' survey. Result: The proposed simulation LOD offers a milestone at each design phases concerning what design variable and attributes need to be developed with how much of details in order to meet the project goal. Also each design team can set up a simulation usecase considering organizational characteristics based on the proposed LOD.

A Simulation Study for the Optimum Design of Cogeneration System (소형열병합발전 최적 시스템 설계 시뮬레이션)

  • Im, Yong-Hoon;Park, Hwa-Choon;Choi, Young-Ho;Chung, Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.325-331
    • /
    • 2009
  • In this paper, a simulation approach for the optimum design of cogeneration system is described. For the purpose of the systematic analysis, a simulation tool is developed with which the prediction of the energy load, calculation of operation data according to prime mover or capacity of it, and estimation of economic gains can be carried out. As for the criterion of the optimum design, the economic gains by adopting cogeneration system is taken. Based on the capital, operation, and maintenance costs etc, LCC analysis is to be carried out for the scenarios respectively. In this study, the simulation for the apartment complex is performed and the analysis of the results are described in detail. The effects of the operation parameters such as capital cost, fuel cost, and unit cost for the purchase or sale of heat and electricity on overall economy are also be considered by sensitivity study.

  • PDF

Assessment of BIN Method to Predict Energy Saving in Office Building Using the RADIANCE Program (RADIANCE 프로그램을 이용한 오피스 건축물에서의 에너지 절감율 예측을 위한 BIN Method 검토)

  • Hong, Seong-Kwan;Park, Byoung-Chul;Choi, An-Seop;Lee, Jeong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.154-159
    • /
    • 2008
  • Daylight is an important component for human and energy saving. Also, available daylight in inside provides positive influence on psychological and physiological aspects as well as good visual environment. It is important to lighting design for office building not only designing for artificial lighting but also using daylight for energy savings. Therefore, lighting designers and architectures must consider the effects of the daylight for human environment and energy savings. The BIN Method is one of the methods to predict energy savings using computer simulation but it spends more time than expectation. So, this study performs to simulate a simple space using the RADIANCE for examination and simplification of the BIN Method.

  • PDF