• Title/Summary/Keyword: Building energy performance

Search Result 1,428, Processing Time 0.027 seconds

An Analysis of Heating Energy Performance in Housings of ICF Method with Passive Design Applied (패시브 디자인을 적용한 ICF공법 주택의 난방에너지 성능 분석)

  • Kim, Jun-Hui;Lee, Tae-Gu
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.33-40
    • /
    • 2013
  • The world population is consuming more than 1/3 of the total energy for heating housings. Particularly in our country, 21% of the consumption energy is occupied by building section. Therefore, it is necessary to increase the energy efficiency in buildings, thus promoting a comfortable residential environment while minimizing energy consumption. Accordingly, this study presents considerations for implementing high-insulated and airtight passive houses. This study selected four houses with passive house design applied, performed building energy performance through PHPP2007, a German passive house design simulation program, and compared the building-specific heat loss and heat gain. As a result, the most vulnerable part to heat loss was turned out to be a window and the heat loss was caused by outer wall, roof, and ventilation. Accordingly, for the implementation of passive house, it is necessary to make a careful plan and airtight construction that are complementary to various parts through the energy performance analysis started from the design phase.

A Case Study on Energy Performance Analysis of Retrofitted Building Using Inverse Model Toolkit (Inverse Model Toolkit을 이용한 리모델링 건축물의 에너지 성능평가 사례)

  • Kwon, Kyung-Woo;Lee, Suk-Joo;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.394-400
    • /
    • 2014
  • Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

Comprehensive Analysis of Energy Consumption Rate and New Technology Trend in High-Performance Buildings related with Different Climatic Zones (세계 기후대별 High-Performance Buildings의 에너지 소비 원단위 평가 및 신기술 적용 동향 분석 연구)

  • Kim, Chul-Ho;Lee, Seung-Eon;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.63-72
    • /
    • 2018
  • In this study, we analyzed high-performance building technologies through a case study of 65 high-performance buildings in the U.S., Europe, Asia and Oceania. In detail, we reviewed the international trend of building energy-saving technology and energy consumption per unit area by analyzing buildings constructed within a 10 year period(2008-018). The primary energy consumption was $48-440kWh/m^2$, and the average value was calculated as $169.3kWh/m^2$. Although some buildings received high certification ratings, they did not meet either Korean or international energy evaluation standards. The system analysis revealed that many energy-saving technologies show various application rates in different countries because the technologies possess different properties. Furthermore, small-area building groups tended to have less primary energy consumption than the medium and large-area buildings, but the area-energy relationship $R^2$ value was analyzed as 0.3161, indicating no clear proportional relationship. Therefore, we propose that it is necessary to maximize the energy savings of buildings by taking into consideration a region's code, climate, building usage, area and space-using patterns to reduce energy and greenhouse gas emissions.

A Study on Energy Reduction of Passive Factor Apply for the Improvement of Energy Performance in Public Building (공공기관 건물의 에너지 성능개선을 위한 패시브 요소 적용의 에너지 절감율 분석 연구)

  • Son, Ji-Hoon;Kim, Sam-Uel
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.196-201
    • /
    • 2011
  • The energy used in Korea is strongly dependent on that produced by foreign countries. Accordingly, saving energy is more important than ever, because of the rise of international oil prices and depletion of oil resources. The development of energy efficient buildings is required especially for public buildings in Korea. In this study, the energy use of public buildings is identify. Then, the analysis of energy usage through regional offices in Busan City offers energy performance for public buildings.

  • PDF

Comparison and Analysis of Domestic and Foreign Building Energy Rating Systems (국내외 건물 에너지성능 인증제도 비교, 분석)

  • Song, Seung-Yeong;Lee, Soo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.77-85
    • /
    • 2007
  • With the increase in the demand for sustainable and environment-friendly development all over the world, it becomes an urgent issue for Korea to reduce $CO_2$ emission. Since building industry accounts for about 40% of international energy and resource consumption and $30{\sim}40%$ of $CO_2$ emission, it is essential to prepare for energy-efficient building. This study aims to seek for improvement direction for a domestic Building Energy Efficiency Rating System through the comparison with foreign systems. Two foreign building energy rating systems which have the similar application scope with domestic one, HERS(Home Energy Rating System) and SAP(Standard Assessment Procedure)2005 were selected. As compared with foreign systems, we intended to suggest improvement direction for effective application of Building Energy Efficiency Rating System in Korea.

Experimental Analysis of Ventilation Effect on the Performance of Building-Integrated PV Solar Roof (건물통합형 PV Solar Roof의 통풍효과 실험분석)

  • Kim, Jin-Hee;Lee, Kang-rock;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • The integration of PV modules into building facades or roof could raise PV module temperature that results in the reduction of electrical power generation. Lowering operating temperature of PV module is important in this respect, and PV module temperature should be considered more accurately, for building-integrated PV(BIPV) systems in predicting their performance. This paper describes a BIPV solar roof design and verifies its performance through experiment In relation to the effect of ventilation in space between PV module and roof surface. The results showed that the ventilation in the space had a positive effect in lowering the module temperature of the BIPV solar roof that enhanced the performance of its electricity generation.

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

A Study on a Efficiency of Glazing for Energy Reduction of Curtain Wall Buildings (유리성능에 따른 커튼월건물의 에너지절약효과에 대한 연구 -표준건물 에너지소비와의 비교분석을 중심으로-)

  • Lee, Yong-Jun;Jung, Kwang-Sub;Oh, Bo-Hwan;Kang, Jae-Sik;Choi, Kyoung-Suk;Lee, Deuk-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.114-119
    • /
    • 2009
  • This study has been conducted to describe the establishment of national measures to reduce world energy consumption and $CO_2$ Emission. Particularly, Reductions in energy consumption from building operation is the most important part to achieve these national objectives. Element to evaluate the quantitative effects of these systems by having rationalized regulation and operation is essential, when planning for building energy reduction design. USGBC(US Green Building Council) have operated sustainable assessment method called LEED, which introduces baseline performance and evaluation direction for building simulation techniques. This research analyzed Quantitative assessments of the building energy consumption and analyzed baseline figures to provide comparative analysis with standard building settings.

  • PDF

A methodology for verification of energy saving performance of Zero Energy School (ZES) (Zero Energy School(ZES) 에너지절감 성과 검증을 위한 방법론 연구)

  • Lee, Hangju;Ahn, JongWook;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Domestic buildings account for 25% of national greenhouse gas emissions and 20% of energy consumption, so energy efficiency improvement of buildings is recognized as the main target of national energy demand management. To improve the energy efficiency of the building, policies are implemented by preparing "zero-energy building national roadmaps" and enhancing the efficiency of national energy demand management through early activation as a result of expansion of the mandatory zero-energy building. Also, there is a growing need to verify the performance of energy savings after the construction is completed. Therefore, methods for evaluating energy performance of buildings should be suggested. This paper aims to develop and present methods for verifying energy performance of Zero Energy School, which can be applied internationally, by visiting domestic schools on-site at the same time as international standards and guidance analysis.