• Title/Summary/Keyword: Building energy performance

Search Result 1,428, Processing Time 0.028 seconds

A Study on the Planning Technique of High-rised Housing Estates Applying Smart Green City Concept : Focus on Multi-functional Administrative City 2-1 Neighborhood (스마트 그린시티 개념을 적용한 고층주거단지 계획기법에 관한 연구 : 행정중심복합도시 2-1생활권을 중심으로)

  • Lee, Seo-Jeong;Lee, Eung-Hyun;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.379-387
    • /
    • 2016
  • The goal of this research is to identify the planning techniques of high-rise housing estates applying a smart green city concept in order to understand the necessity of integrating 'planning & building' planning techniques and 'smart system' planning techniques and to analyze the current status of application. For the research, firstl, the definition of smart green city was established and high-rise housing estates planning was categorized according to a three space hierarchy, seven planning directions and 17 major features through literature review. Second, 28 'planning & building' planning techniques and 'smart system' planning techniques were derived through literature review and FGI analysis. Last, four cases in Multi-functional Administrative City were analyzed for the current status of application of planning techniques. In conclusion, planning techniques in 'Transportation Network', 'Environment-friendly layout planning of housing', 'Revitalization of green transportation', 'Utilization of new & renewable energy', 'Crime prevention and accident reduction', 'Use of high performance, and efficiency facility' main feature were identified as important planning techniques for Smart Green City and its implications were estimated.

Analysis and Optimization of ICT Application in Construction Phase (시공단계 ICT 도입 효과분석 및 최적화 방안)

  • Go, Tae-Yong;Kim, Ryul-Hee;Lee, Dong-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • This paper presents a modeling prototype that optimizes construction processes implementing information communication technology (ICT). Using "IAMB", each and every actual steps of the construction process may be defined visually and explicitly by elaborating ICT to improve productivity and management efficiency. It contributes to identify the features on what parts of construction task are covered by ICT, and the effects of ICT on process performance. After analyzing 10 real project cases, ICT application types are classified into four categories according to ICT type, job functions that ICT applied, and the project phase in which ICT used. As a reuslt, it was confirmed that the positive outcomes on the construction process were beneficial to mostly the general contractors and mainly obtained by automated information processing, external consignment and consistent information use. Negative effects, which were occurred by mainly manual manipulation and duplication of information handling, were accrued to general contractors minimally, but to subcontractors maximally. Expert focus group commends that several important issues should be considered when implementing ICT.

A Study on the Environmentally-friendly Design Techniques Extract and Applying Modern of Traditional Residential Area - The Case of Dokrakdang in Kyungbuk Province - (전통주거공간의 환경친화적 설계기법 추출 및 현대적 적용 - 경상북도 독락당을 사례로 -)

  • Heo, Jun;Song, Byeong Hwa
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • The aim of this study, a traditional residential area in the environmentally friendly design techniques to identify the techniques and principles that have been carried out to reestablish the principles. To do this, through literature review environmental performance is reflected in the traditional residential area side of resources conservation, locational aspects, spatial configuration, and how cases were selected looking for ways to apply modern. Are examples of upper class housing in the Chosen Dynasty Period period construction relatively well-preserved round and a good building with a clear housing Dokrakdang year were selected. Locational aspects of the terrain with minimal changes to the building and construction techniques were entirely in terms of environmental conservation and environmental temperature was adjusted to regulate the room temperature technique could be seen. In terms of cycling in natural materials were recycled. and water make used of positive through water cycling technique & water control. In addition, the importance of landscape views overlooking the landscape from inside to outside through the regulation of the various internal and external space technique was used to attract and expand. Traditionality in the pursuit of modern space, simply cut off because of tradition rather than to restore or recover the organizing principle inherent in the traditional space, and extraction of the contemporary social, cultural and environmental understanding of space is acceptable in basis. Environmentally-friendly design techniques in a traditional residential area for a long time to be developed by the experience of its application of modern environmental and energy problems and pleasant environment to the creation of human life and are subject to significant swings in that.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls

Comparison of Formaldehyde Emission Rate and Formaldehyde Content from Rice Husk Flour Filled Particleboard Bonded with Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Kim, Hyun-Joong;Lee, Hwa Hyoung;Yoon, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.42-51
    • /
    • 2006
  • The this study, the effect of rice husk flour (RHF) as scavenger on formaldehyde emission rate and formaldehyde content from urea-formaldehyde (UF) resin bonded RHF content wood particleboards (PB). Two type of particle size ($30{\mu}m$ and $300{\mu}m$) of RHF was premixed with the UF resin at 5% and 15% by weight. The performance of UF resins is greatly influenced by the curing characteristics in their curing processing. The curing behavior was monitored activation energy ($E_a$) by DSC and pH variation according to RHF contents. PB with dimensions of $27cm{\times}27cm{\times}0.7cm$ was prepared at a specific gravity of 0.75 using $E_1$ and $E_2$ class UF resins. Formaldehyde emission and formaldehyde content from RHF filled PB bonded with UF resin was measured by 24 h desiccator and perforator method, respectively. RHF causes an increased pH of UF resin. $E_a$ of the modified UF resin decreased independently of RHF particle size. As the pH and the $E_a$ variation of the UF resin containing RHF increased, the amount of formaldehyde content decreased. The formaldehyde emission and formaldehyde content levels of the PB bonded with 15 wt% of $30{\mu}m$ RHF and $E_2$ type UF resin were low and satisfied grade $E_1$, as measured by 24 h desiccator and perforator method. The result of a comparison between 24 h desiccator and perforator test using PB showed that the linear regression analyses show a good correlation between the results for the 24 h desiccator and the perforator tests. The linear regression of a correlation between the desiccator and the perforator was Y=4.842X-0.064 ($R^2=0.989$). RHF was effective at reducing formaldehyde emission and formaldehyde content in urea-formaldehyde adhesives when used as scavenger.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

An Experiment Study on Manufacturing process of BIPV Module (BIPV모듈의 제조공정에 관한 실험적 연구)

  • An, Youngsub;Kim, Sungtae;Lee, Sungjin;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.